3 resultados para PLASMA INTERACTION
em Cochin University of Science
Resumo:
The laser produced plasma from the multi-component target YBa2CU3O7 was analyzed using Michelson interferometry and time resolved emission spectroscopy. The interaction of 10 ns pulses of 1.06 mum radiation from a Q-switched Nd:YAG laser at laser power densities ranging from 0.55 GW cm-2 to 1.5 GW cm-2 has been studied. Time resolved spectral measurements of the plasma evolution show distinct features at different points in its temporal history. For a time duration of less than 55 ns after the laser pulse (for a typical laser power density of 0.8 GW cm-2, the emission spectrum is dominated by black-body radiation. During cooling after 55 ns the spectral emission consists mainly of neutral and ionic species. Line averaged electron densities were deduced from interferometric line intensity measurements at various laser power densities. Plasma electron densities are of the order of 1017 cm-3 and the plasma temperature at the core region is about 1 eV. The measurement of plasma emission line intensities of various ions inside the plasma gave evidence of multiphoton ionization of the elements constituting the target at low laser power densities. At higher laser power densities the ionization mechanism is collision dominated. For elements such as nitrogen present outside the target, ionization is due to collisions only.
Resumo:
Developments in laser technology over the past few years have made it possible to do experiments with focused intensities of IO"-102' Wcm'z. Short-pulse high-intensity lasers are able to accelerate protons and heavier ions to multi-MeV energies during their interaction with solid targets, gas jets and clusters. When such a laser radiation is focused at the intensity above 10” Wcm'2, local electric field strength will be almost equivalent to that within an atom. Hence, new nonlinear optical phenomena will be expected in the field of light matter interaction. Most of the research in the material interaction using high power lasers, especially related to plasma interaction, has been directed to the short pulse x-ray generation- Nanosecond laser interactions with solid targets also generate plasmas which emit radiation mainly in the optical region, the understanding of which is far from satisfactory. This thesis deals with a detailed study of some of the dynamical processes in plasmas generated by nanosecond and femtosecond lasers
Resumo:
This thesis is entitled “OPTICAL EMISSION DIAGNOSTICS OF LASER PRODUCED PLASMA FROM GRAPHITE AND YBa2Cu3O7. The work presented in this thesis covers the experimental results on the plasma produced with moderately high power laser with irradiance range in between 10 GW cm 2 to 100 GW cm -2. The characterization of laser produced plasma from solid targets viz. graphite and high temperature superconducting material like YBa2Cu3O7 have been carried out. The fundamental frequency from a Q - switched Nd: YAG laser with 9 ns pulse duration is used for the present studies. Various optical emission emission diagnostic techniques were employed for the the characterization of the LPP which include emission spectroscopy, time resolved studies, line broadening method etc. In order to understand the physical nature of the LPP like recombination, collisional excitation and the laser interaction with plasma, the time resolved studies offer the most logical approach