10 resultados para PHOTOLUMINESCENCE
em Cochin University of Science
Resumo:
The laser-induced luminescence studies of the rare earth titanates (R2Ti2O7) (R = La, Nd and Gd) using 355 nm radiation from an Nd:YAG laser are presented. These samples with submicron or nanometer size are prepared by the self-propagating high temperature synthesis (SHS) method and there is no known fluorescence shown by these rare earths in the visible region. Hence, the luminescence transitions shown by the La2Ti2O7 near 610 nm and Gd2Ti2O7 near 767 nm are quite interesting. Though La3+ ions with no 4f electrons have no electronic energy levels that can induce excitation and luminescence processes in the visible region, the presence of the Ti3+ ions leads to luminescence in this region.
Resumo:
Sol–gel glasses with Fe3O4 nanoparticles having particle sizes laying in the range 10–20 nm were encapsulated in the porous network of silica resulting in nanocomposites having both optical and magnetic properties. Spectroscopic and photoluminescence studies indicated that Fe3O4 nanocrystals are embedded in the silica matrix with no strong Si–O–Fe bonding. The composites exhibited a blue luminescence. The optical absorption edge of the composites red shifted with increasing concentration of Fe3O4 in the silica matrix. There is no obvious shift in the position of the luminescence peak with the concentration of Fe3O4 except that the intensity of the peak is decreased. The unique combinations of magnetic and optical properties are appealing for magneto–optical applications.
Resumo:
Photoluminescence (PL) spectroscopy is an optical technique that has emerged successful in the field of semiconductor material and device characterization. This technique is quite a powerful one which gives idea about the defect levels in a material, the band gap of the material, composition as well as material quality. Over the recent years it has received an elevation as a mainstream characterization technique. This thesis is an attempt to characterize each individual layer used in a thin film solar cell with special focus on the electrical properties. This will be highly beneficial from the lab as well as industrial point of view because electrical measurements generally are contact mode measurements which tend to damage the surface. As far as a thin film solar cell is concerned, the constituent layers are the transparent conducting oxide (TCO), absorber layer, buffer layer and top electrode contact. Each layer has a specific role to play and the performance of a solar cell is decided and limited by the quality of each individual layer. Various aspects of PL spectroscopy have been employed for studying compound semiconductor thin films [deposited using chemical spray pyrolysis (CSP)] proposed for solar cell application. This thesis has been structured in to seven chapters
Resumo:
Conjugated polymers in the form of thin films play an important role in the field of materials science due to their interesting properties. Polymer thin films find extensive applications in the fabrication of devices, such as light emitting devices, rechargeable batteries, super capacitors, and are used as intermetallic dielectrics and EMI shieldings. Polymer thin films prepared by plasma-polymerization are highly cross-linked, pinhole free, and their permittivity lie in the ultra low k-regime. Electronic and photonic applications of plasma-polymerized thin films attracted the attention of various researchers. Modification of polymer thin films by swift heavy ions is well established and ion irradiation of polymers can induce irreversible changes in their structural, electrical, and optical properties. Polyaniline and polyfurfural thin films prepared by RF plasmapolymerization were irradiated with 92MeV silicon ions for various fluences of 1×1011 ions cm−2, 1×1012 ions cm−2, and 1×1013 ions cm−2. FTIR have been recorded on the pristine and silicon ion irradiated polymer thin films for structural evaluation. Photoluminescence (PL) spectra were recorded for RF plasma-polymerized thin film samples before and after irradiation. In this paper the effect of swift heavy ions on the structural and photoluminescence spectra of plasma-polymerized thin films are investigated.
Resumo:
Sol–gel glasses with Fe3O4 nanoparticles having particle sizes laying in the range 10–20 nm were encapsulated in the porous network of silica resulting in nanocomposites having both optical and magnetic properties. Spectroscopic and photoluminescence studies indicated that Fe3O4 nanocrystals are embedded in the silica matrix with no strong Si–O–Fe bonding. The composites exhibited a blue luminescence. The optical absorption edge of the composites red shifted with increasing concentration of Fe3O4 in the silica matrix. There is no obvious shift in the position of the luminescence peak with the concentration of Fe3O4 except that the intensity of the peak is decreased. The unique combinations of magnetic and optical properties are appealing for magneto–optical applications.
Resumo:
SnO2 nanocrystalline thin films were deposited on glass substrates by the spray pyrolysis technique in air atmosphere at 375, 400, 425, 450 and 500 ◦C substrate temperatures. The obtained films were characterized by using XRD. The room temperature photoluminescence (PL) spectra of these films have near band edge (NBE) and deep level emission under the excitation of 325 nm radiation. NBE PL peak intensity decreased consistently with temperatures for samples prepared at 400, 450 and 500 ◦C, while a sudden reduction in intensity is observed for the sample prepared at 425 ◦C. A similar effect was observed for the optical transmittance spectra. These effects can be explained on the basis of the change in population of oxygen vacancies as indicated by the change in a values
Resumo:
ZnO micro particles in the range 0.4-0.6 μm were synthesized by microwave irradiation method. The XRD analysis reveals that the sample is in the wurtzite phase with orientation along the (101) plane. SAED pattern of the sample reveals the single crystalline nature of the micro grains. TEM images show the formation of cylindrical shaped ZnO micro structures with hexagonal faces. The optical phonon modes were slightly shifted in the Raman spectrum,attributed to the presence of various crystalline defects and laser induced local heating at the grain boundaries. A broad transmission profile was observed in the FTIR spectrum from 1550-3400 cm-1 which falls in the atmospheric transparency window region. PL spectrum centered at 500 nm with a broad band in the region 420-570 nm comprised of different emission peaks attributed to transition between defect levels. Various emission levels in the sample were expliained with a band diagram
Resumo:
This work projects photoluminescence (PL) as an alternative technique to estimate the order of resistivity of zinc oxide (ZnO) thin films. ZnO thin films, deposited using chemical spray pyrolysis (CSP) by varying the deposition parameters like solvent, spray rate, pH of precursor, and so forth, have been used for this study. Variation in the deposition conditions has tremendous impact on the luminescence properties as well as resistivity. Two emissions could be recorded for all samples—the near band edge emission (NBE) at 380 nm and the deep level emission (DLE) at ∼500 nm which are competing in nature. It is observed that the ratio of intensities of DLE to NBE ( DLE/ NBE) can be reduced by controlling oxygen incorporation in the sample. - measurements indicate that restricting oxygen incorporation reduces resistivity considerably. Variation of DLE/ NBE and resistivity for samples prepared under different deposition conditions is similar in nature. DLE/ NBE was always less than resistivity by an order for all samples.Thus from PL measurements alone, the order of resistivity of the samples can be estimated.
Resumo:
Several series of Eu3+ based red emitting phosphor materials were synthesized using solid state reaction route and their properties were characterized. The present studies primarily investigated the photoluminescence properties of Eu3+ in a family of closely related host structure with a general formula Ln3MO7. The results presented in the previous chapters throws light to a basic understanding of the structure, phase formation and the photoluminescence properties of these compounds and their co-relations. The variation in the Eu3+ luminescence properties with different M cations was studied in Gd3-xMO7 (M = Nb, Sb, Ta) system.More ordering in the host lattice and more uniform distribution of Eu3+ ions resulting in the increased emission properties were observed in tantalate system.Influence of various lanthanide ion (Lu, Y, Gd, La) substitutions on the Eu3+ photoluminescence properties in Ln3MO7 host structures was also studied. The difference in emission profiles with different Ln ions demonstrated the influence of long range ordering, coordination of cations and ligand polarizability in the emission probabilities, intensity and quantum efficiency of these phosphor materials. Better luminescence of almost equally competing intensities from all the 4f transitions of Eu3+ was noticed for La3TaO7 system. Photoluminescence properties were further improved in La3TaO7 : Eu3+ phosphors by the incorporation of Ba2+ ions in La3+ site. New red phosphor materials Gd2-xGaTaO7 : xEu3+ exhibiting intense red emissions under UV excitation were prepared. Optimum doping level of Eu3+ in these different host lattices were experimentally determined. Some of the prepared samples exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. In the present studies, Eu3+ acts as a structural probe determining the coordination and symmetry of the atoms in the host lattice. Results from the photoluminescence studies combined with the powder XRD and Raman spectroscopy investigations helped in the determination of the correct crystal structures and phase formation of the prepared compounds. Thus the controversy regarding the space groups of these compounds could be solved to a great extent. The variation in the space groups with different cation substitutions were discussed. There was only limited understanding regarding the various influential parameters of the photoluminescence properties of phosphor materials. From the given studies, the dependence of photoluminescence properties on the crystal structure and ordering of the host lattice, site symmetries, polarizability of the ions, distortions around the activator ion, uniformity in the activator distribution, concentration of the activator ion etc. were explained. Although the presented work does not directly evidence any application, the materials developed in the studies can be used for lighting applications together with other components for LED lighting. All the prepared samples were well excitable under near UV radiation. La3TaO7 : 0.15Eu3+ phosphor with high efficiency and intense orange red emissions can be used as a potential red component for the realization of white light with better color rendering properties. Gd2GaTaO7 : Eu3+, Bi2+ red phosphors give good color purity matching to NTSC standards of red. Some of these compounds exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. However thermal stability and electrical output using these compounds should be studied further before applications. Based on the studies in the closely related Ln3MO7 structures, some ideas on selecting better host lattice for improved luminescence properties could be drawn. Analyzing the CTB position and the number of emission splits, a general understanding on the doping sites can be obtained. These results could be helpful for phosphor designs in other host systems also, for enhanced emission intensity and efficiency.