4 resultados para PESTICIDE-RESIDUES
em Cochin University of Science
Resumo:
Man uses a variety of synthetic material for his comfortable materialistic life. Thus human interactions may become harmful for various terrestrial and aquatic lives. This is by contaminating their habitat and by becoming a threat to organisms itself. Thus the application and dispersal of several organic pollutants can lead to the development of several mutated forms of the species when exposed to sublethal concentrations of the pollutants. Otherwise, a decrease in number or extinction of these exposed species from earth's face may happen. Pesticides, we use for the benefit of crop yield, but its persistence may become havoc to non-target organism. Pesticides reaching a reservoir can subsequently enter the higher trophic levels. Organophosphorus compounds have replaced all other pesticides, due to its acute toxicity and non-persistent nature.Hence the present study has concentrated on the toxicity of the largest market-selling and multipurpose pesticide, chlorpyrifos on the commonly edible aquatic organism, fish. The euryhaline cichlid Oreochromis mossambicus was selected as animal model. The study has concentrated on investigating biochemical parameters like tissue-specific enzymes, antioxidant and lipid-peroxidation parameters, haematological and histological observations and pesticide residue analysis.Major findings of this work have indicated the possibility of aquatic toxicity to the fish on exposure to the insecticide chlorpyrifos. The insecticide was found as effective to induce structural alteration, depletion in protein content, decrease in different metabolic enzyme levels and to progress lipid peroxidation on a prolonged exposure of 21 days. The ion-transport mechanism was found to be adversely affected. Electrophoretic analysis revealed the disappearance of several protein bands after 21days of exposure to chlorpyrifos. Residue, analysis by gas chromatography explored the levels of chlorpyrifos retaining on the edible tissue portions during exposure period of 21days and also on a recovery period of 10 days.
Resumo:
School of Environmental Studies, Cochin University of Science and Technology
Resumo:
Methylparathion (MP) is an organophosphorus insecticide used world wide in agriculture due to its high activity against a broad spectrum of insect pests. The aim of the study is to understand the effect of methylparathion on the lipid peroxidation, detoxifying and antioxidant enzymes namely catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione Stransferase (GST), total reduced glutathione (GSH), lipid peroxidation (LPO), acetylcholinesterase (AChE) and disease diagnostic marker enzymes in liver, sarcoplasmic (SP) and myofirbirllar (MF) proteins in muscles, lipids and histopathlogical changes in various organs of Labeo rohita of size 75 i 6g at lethal and sublethal level of exposure. The probit analysis showed that the lethal concentration (LC 50%) for 24, 48, 72 and 96h were 15.5mg/L, 12.3mg/L, 11.4mg/L and 10.2mg/L respectively which is much higher compared to the LC50 for juvenile fish. The LPO level and GST activity increased five folds and two folds respectively on exposure to methylparathion at 10.2 mg/L and the level of the enzymes increased, on sub lethal exposure beyond 0.25mg/L. AChE activity was inhibited by 74% at a concentration of 1.8mg/L and 90% at 5.4mg/L. The disease diagnostic marker enzymes AST, ALT, ALP and LDH increased by about 2, 3 ,3 and 2 folds respectively at pesticide concentration of 10.2mg/L when compared to control. On sub lethal exposure, however the enzymes did not show any significant changes up to 0.5mg/L. At a concentration of 10.2 mg/L, there was a three fold increase in myofibrillar proteins while the increase in sarcoplasmic protein was above 1.5 fold. On sub lethal exposure, significant alteration was noticed up to 30 days up to 1mg/L of methylparathion concentration. Further exposure up to 45 days increased sarcoplasmic proteins (upto 0.5mg/L). ln the case of myofibrillar proteins, noticeable changes were observed at 1mg/L concentration right from 15th day. The cholesterol content in brain tissues increased by about 27% at methylparathion concentration of 5.4 mglL. However at 0.25mg/L sub lethal concentration, no significant alteration was observed in enzyme activity, muscle proteins, lipids and histopathology of the tissues. The results suggest that methylparathion has the potential to induce oxidative stress in fish, and that liver, muscle and brains are more sensitive organs of Labeo rohita, with poor antioxidant potentials at higher concentrations of the pesticide. The various parameters studied in this investigation can also be used as biomarkers of methylparathion exposure.
Resumo:
The thesis is Studies on the Effect or the Obganophosphorus Pesticide Ekalux(R) EC 25 on the Bacterial Flora or Villorita Cyprinoides Var.Cochinensis (Hanley). For the present investigation, the black clam Villorita gyprinoides var. cochinensis (Hanley), a most common clam genus present in this estuarine system has been selected as test organaism and Ekalux (R) EC 25 as toxicant. The aspects dealt with are 1. Total heterotrophic bacterial population, 2. Generic composition, 3. Hydrolytic enzyme producing bacteria, 4. Antibiotic resistance, 5. Heavy metal resistance, 6. The effect of pesticide concentration on the growth of the bacteria and 7. Effect of temperature, pH and sodium chloride on the growth and phosphate release of selected isolates.The samples for the experiment were collected from the Vembanad Lake, near Kumbalam Island during the period of September 1985 to May '86. The THB of the estuarine water and clams contained 6.5 x I04/ml and 2.975 x l06/g respectively, immediately after collection. Untreated water and clam samples showed enormous increase in THB from 0 hr population. The treated samples (water and clams) contained higher THB than 0 hr. In general, THB was observed to increase tremendously in the samples treated with pesticide when compared to their native flora. With reference to various concentrations of pesticides, THB recorded an increase with increase of concentration in water and clam samples.