8 resultados para PACKET MARKING
em Cochin University of Science
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
Biophotonics Laboratory,Centre for Earth Science Studies
Resumo:
Sensor networks are one of the fastest growing areas in broad of a packet is in transit at any one time. In GBR, each node in the network can look at itsneighbors wireless ad hoc networking (? Eld. A sensor node, typically'hop count (depth) and use this to decide which node to forward contains signal-processing circuits, micro-controllers and a the packet on to. If the nodes' power level drops below a wireless transmitter/receiver antenna. Energy saving is one certain level it will increase the depth to discourage trafiE of the critical issue for sensor networks since most sensors are equipped with non-rechargeable batteries that have limitedlifetime. Routing schemes are used to transfer data collectedby sensor nodes to base stations. In the literature many routing protocols for wireless sensor networks are suggested. In this work, four routing protocols for wireless sensor networks viz Flooding, Gossiping, GBR and LEACH have been simulated using TinyOS and their power consumption is studied using PowerTOSSIM. A realization of these protocols has beencarried out using Mica2 Motes.
Resumo:
Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.
Resumo:
In Wireless Sensor Networks (WSN), neglecting the effects of varying channel quality can lead to an unnecessary wastage of precious battery resources and in turn can result in the rapid depletion of sensor energy and the partitioning of the network. Fairness is a critical issue when accessing a shared wireless channel and fair scheduling must be employed to provide the proper flow of information in a WSN. In this paper, we develop a channel adaptive MAC protocol with a traffic-aware dynamic power management algorithm for efficient packet scheduling and queuing in a sensor network, with time varying characteristics of the wireless channel also taken into consideration. The proposed protocol calculates a combined weight value based on the channel state and link quality. Then transmission is allowed only for those nodes with weights greater than a minimum quality threshold and nodes attempting to access the wireless medium with a low weight will be allowed to transmit only when their weight becomes high. This results in many poor quality nodes being deprived of transmission for a considerable amount of time. To avoid the buffer overflow and to achieve fairness for the poor quality nodes, we design a Load prediction algorithm. We also design a traffic aware dynamic power management scheme to minimize the energy consumption by continuously turning off the radio interface of all the unnecessary nodes that are not included in the routing path. By Simulation results, we show that our proposed protocol achieves a higher throughput and fairness besides reducing the delay
Resumo:
Speech is a natural mode of communication for people and speech recognition is an intensive area of research due to its versatile applications. This paper presents a comparative study of various feature extraction methods based on wavelets for recognizing isolated spoken words. Isolated words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. This work includes two speech recognition methods. First one is a hybrid approach with Discrete Wavelet Transforms and Artificial Neural Networks and the second method uses a combination of Wavelet Packet Decomposition and Artificial Neural Networks. Features are extracted by using Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Training, testing and pattern recognition are performed using Artificial Neural Networks (ANN). The proposed method is implemented for 50 speakers uttering 20 isolated words each. The experimental results obtained show the efficiency of these techniques in recognizing speech
Resumo:
Sensor networks are one of the fastest growing areas in broad of a packet is in transit at any one time. In GBR, each node in the network can look at itsneighbors wireless ad hoc networking (? Eld. A sensor node, typically'hop count (depth) and use this to decide which node to forward contains signal-processing circuits, micro-controllers and a the packet on to. If the nodes' power level drops below a wireless transmitter/receiver antenna. Energy saving is one certain level it will increase the depth to discourage trafiE of the critical issue forfor sensor networks since most sensors are equipped with non-rechargeable batteries that have limited lifetime.
Resumo:
Presently different audio watermarking methods are available; most of them inclined towards copyright protection and copy protection. This is the key motive for the notion to develop a speaker verification scheme that guar- antees non-repudiation services and the thesis is its outcome. The research presented in this thesis scrutinizes the field of audio water- marking and the outcome is a speaker verification scheme that is proficient in addressing issues allied to non-repudiation to a great extent. This work aimed in developing novel audio watermarking schemes utilizing the fun- damental ideas of Fast-Fourier Transform (FFT) or Fast Walsh-Hadamard Transform (FWHT). The Mel-Frequency Cepstral Coefficients (MFCC) the best parametric representation of the acoustic signals along with few other key acoustic characteristics is employed in crafting of new schemes. The au- dio watermark created is entirely dependent to the acoustic features, hence named as FeatureMark and is crucial in this work. In any watermarking scheme, the quality of the extracted watermark de- pends exclusively on the pre-processing action and in this work framing and windowing techniques are involved. The theme non-repudiation provides immense significance in the audio watermarking schemes proposed in this work. Modification of the signal spectrum is achieved in a variety of ways by selecting appropriate FFT/FWHT coefficients and the watermarking schemes were evaluated for imperceptibility, robustness and capacity char- acteristics. The proposed schemes are unequivocally effective in terms of maintaining the sound quality, retrieving the embedded FeatureMark and in terms of the capacity to hold the mark bits. Robust nature of these marking schemes is achieved with the help of syn- chronization codes such as Barker Code with FFT based FeatureMarking scheme and Walsh Code with FWHT based FeatureMarking scheme. An- other important feature associated with this scheme is the employment of an encryption scheme towards the preparation of its FeatureMark that scrambles the signal features that helps to keep the signal features unreve- laed. A comparative study with the existing watermarking schemes and the ex- periments to evaluate imperceptibility, robustness and capacity tests guar- antee that the proposed schemes can be baselined as efficient audio water- marking schemes. The four new digital audio watermarking algorithms in terms of their performance are remarkable thereby opening more opportu- nities for further research.