2 resultados para P-tolyl

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis and reactions of simple derivatives of 2(3H)- and 3(2H)furanones have attracted considerable attention in recent years, primarily in connection with development of routes to antitumor agents that contain this ring as central structural unit. They also serve as useful synthetic building blocks for lactones and furans and are the precursors of a wide variety of biologically important heterocyclic systems. Although a number of syntheses of furanones were known they were in many cases limited to specific substitution pattems. The development of altemative strategies for the preparation of these heterocycles is therefore of considerable importance or continues to be a challenge.We propose to develop new and general approaches to the synthesis of furanone ring systems from simple and readily available starting materials since we were interested in examining their rich photochemistry. The photochemical reactivity of Beta,gama-unsaturated lactams and lactones is a subject of current interest. Some of the prominent photoreaction pathways of unsaturated lactones include decarbonylation, solvent addition to double bonds, decarboxylation, migration of aryl substituents and dimerisation. lt was reported earlier that the critical requirement for clean photochemical cleavage of the acyl-oxygen bond is the presence ofa double bond adjacent to the ether oxygen and 2(3H)-furanones possessing this structural requirement undergo facile decarbonylation. But related phenanthrofuranones are isolated as photostable end products upon irradiation. Hence we propose to synthesis a few phenanthro-2(3H)-furanones to study the effect of a radical stabilising group at 3-position of furanone ring on photolysis. To explore the tripletmediated transformations of 2(3H)-furanones in polar and nonpolar solvents a few 3,3-bis(4-chlorophenyl)-5-aryl-3H-furan-2-ones and 3,3-di(p-tolyl)-5-aryl- 3H-furan-2-ones were synthesised from the corresponding dibenzoylstyrene precursors by neat thermolysis. Our aim was to study the nature of intermediates involved in these transformations.We also explored the possibility of developing a new and general approach to the synthesis of 3(2H)-furanones from simple and readily available starting materials since such general procedures are not available. The protocol developed by us employs readily available phenanthrenequinone and various 4-substituted acetophenones as starting materials and provides easy access to the required 3(2H)-furanone targets. These furanone derivatives have immense potential for further investigations .We also aimed the synthesis of a few dibenzoylalkene-type systems such as acenaphthenone-2—ylidene ketones and phenanthrenone-9-ylidene ketones. These systems were expected to undergo thermal rearrangement to give furanones and spirofuranones. Also these systems can be categorised as quinonemethides which are valuable synthetic intermediates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study deals with the production of l-phenylflavazoles with chloro, amino, hydroxy, chloromethyl, carboxamido, trichloromethyl, N-pyrrolidyl and N-pyrrolidylmethyl groups substituted at position 3. The interconversions of 3-amino, 3-hydroxy and 3-chlorol- phenylflavazoles were also investigated. Further, an unusual phenylation reaction was found to take place if stored or air-oxidised phenylhydrazine was used as the condensing agent for the formation of flavazoles from quinoxaline-2-carboxaldehyde phenylhydrazones. By this phenylation reaction 1,3-diphenyl, l-p-tolyl-3-phenyl, l-p-chlorophenyl-3-phenyl, l-p-bromophenyl- 3-phenyl and l-phenyl-3-p-tolylflavazoles were prepared. In addition to establishing the structure of the phenylation products, the reaction was shown to take place by a free radical mechanism involving phenyl radicals formed from oxidised phenylhydrazine. Also the oxidation, reduction and bromination reactions of l-phenylflavazole were investigated. The product obtained when a mixture of l-phenylflavazole and sodium borohydride in isopropanol was heated under reflux was shown to be 2-anilinoquinoxaline-3-carboxamide which when refluxed with concentrated hydrochloric acid gave the known 2-anilinoquinoxaline. New procedures were worked out for the oxidative cyclisation reactions of quinoxaline-2carboxaldehyde phenylhydrazones to l-phenylflavazoles in excellent yields using azobenzene as a dehydrogenating agent. These cyclisations were also shown to take place, though in low Yield, if the quinoxaline2- carboxaldehyde phenylhydrazones were heated above their melting points in an atmosphere containing oxygen.