7 resultados para Oriented Aggregation
em Cochin University of Science
Resumo:
Thermal lensing effect was studied in aqueous solutions of rhodamine B using 532 nm, 9 ns pulses from a Nd:YAG laser. A low intensity He-Ne laser beam was used for probing the thermal lens. Results obtained show that it is appropriate to use this technique for studying nonlinear absorption processes like two photon absorption or excited state absorption and for analyzing dimerization equilibria.
Resumo:
Dual-beam transient thermal lens studies were carried out in aqueous solutions of rhodamine 6G using 532 nm pulses from a frequency-doubled Nd:YAG laser. The analysis of the observed data showed that the thermal lens method can effectively be utilized to study the nonlinear absorption and aggregation which are taking place in a dye medium.
Resumo:
Department of Marine Geology and Geophysics,Cochin University of Science and Technology
Resumo:
Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.Embedded systems are usually designed for a single or a specified set of tasks. This specificity means the system design as well as its hardware/software development can be highly optimized. Embedded software must meet the requirements such as high reliability operation on resource-constrained platforms, real time constraints and rapid development. This necessitates the adoption of static machine codes analysis tools running on a host machine for the validation and optimization of embedded system codes, which can help meet all of these goals. This could significantly augment the software quality and is still a challenging field.This dissertation contributes to an architecture oriented code validation, error localization and optimization technique assisting the embedded system designer in software debugging, to make it more effective at early detection of software bugs that are otherwise hard to detect, using the static analysis of machine codes. The focus of this work is to develop methods that automatically localize faults as well as optimize the code and thus improve the debugging process as well as quality of the code.Validation is done with the help of rules of inferences formulated for the target processor. The rules govern the occurrence of illegitimate/out of place instructions and code sequences for executing the computational and integrated peripheral functions. The stipulated rules are encoded in propositional logic formulae and their compliance is tested individually in all possible execution paths of the application programs. An incorrect sequence of machine code pattern is identified using slicing techniques on the control flow graph generated from the machine code.An algorithm to assist the compiler to eliminate the redundant bank switching codes and decide on optimum data allocation to banked memory resulting in minimum number of bank switching codes in embedded system software is proposed. A relation matrix and a state transition diagram formed for the active memory bank state transition corresponding to each bank selection instruction is used for the detection of redundant codes. Instances of code redundancy based on the stipulated rules for the target processor are identified.This validation and optimization tool can be integrated to the system development environment. It is a novel approach independent of compiler/assembler, applicable to a wide range of processors once appropriate rules are formulated. Program states are identified mainly with machine code pattern, which drastically reduces the state space creation contributing to an improved state-of-the-art model checking. Though the technique described is general, the implementation is architecture oriented, and hence the feasibility study is conducted on PIC16F87X microcontrollers. The proposed tool will be very useful in steering novices towards correct use of difficult microcontroller features in developing embedded systems.
Resumo:
Traffic Management system (TMS) comprises four major sub systems: The Network Database Management system for information to the passengers, Transit Facility Management System for service, planning, and scheduling vehicle and crews, Congestion Management System for traffic forecasting and planning, Safety Management System concerned with safety aspects of passengers and Environment. This work has opened a rather wide frame work of model structures for application on traffic. The facets of these theories are so wide that it seems impossible to present all necessary models in this work. However it could be deduced from the study that the best Traffic Management System is that whichis realistic in all aspects is easy to understand is easy to apply As it is practically difficult to device an ideal fool—proof model, the attempt here has been to make some progress-in that direction.
Resumo:
ZnO thin films were coated on amorphous glass substrate at various temperatures in the range 160-500 0C by spray pyrolysis method. The as deposited films were characterised by using XRD and SEM. Wurtzite phase of ZnO was formed at a substrate temperature of 400 0C, highly oriented (002) phase was developed with respect to increase of substrate temperature from 450 to 500 0C. Morphological and growth mode of these films were analyzed with respect to structural orientation of films from wurtzite to highly (002) oriented phase. Present study reveals that substrate temperature was one of the important parameters which determine the crystalline quality, population of defects, grain size, orientation and morphology of the films