2 resultados para Orbital magnetism

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queueing system in which arriving customers who find all servers and waiting positions (if any) occupied many retry for service after a period of time are retrial queues or queues with repeated attempts. This study deals with two objectives one is to introduce orbital search in retrial queueing models which allows to minimize the idle time of the server. If the holding costs and cost of using the search of customers will be introduced, the results we obtained can be used for the optimal tuning of the parameters of the search mechanism. The second one is to provide insight of the link between the corresponding retrial queue and the classical queue. At the end we observe that when the search probability Pj = 1 for all j, the model reduces to the classical queue and when Pj = 0 for all j, the model becomes the retrial queue. It discusses the performance evaluation of single-server retrial queue. It was determined by using Poisson process. Then it discuss the structure of the busy period and its analysis interms of Laplace transforms and also provides a direct method of evaluation for the first and second moments of the busy period. Then it discusses the M/ PH/1 retrial queue with disaster to the unit in service and orbital search, and a multi-server retrial queueing model (MAP/M/c) with search of customers from the orbit. MAP is convenient tool to model both renewal and non-renewal arrivals. Finally the present model deals with back and forth movement between classical queue and retrial queue. In this model when orbit size increases, retrial rate also correspondingly increases thereby reducing the idle time of the server between services

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.