41 resultados para Optical character recognition devices.
em Cochin University of Science
Resumo:
Optical Character Recognition plays an important role in Digital Image Processing and Pattern Recognition. Even though ambient study had been performed on foreign languages like Chinese and Japanese, effort on Indian script is still immature. OCR in Malayalam language is more complex as it is enriched with largest number of characters among all Indian languages. The challenge of recognition of characters is even high in handwritten domain, due to the varying writing style of each individual. In this paper we propose a system for recognition of offline handwritten Malayalam vowels. The proposed method uses Chain code and Image Centroid for the purpose of extracting features and a two layer feed forward network with scaled conjugate gradient for classification
Resumo:
On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds
Resumo:
This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using Kohonen network. It would help in recognizing Malayalam text entered using pen-like devices. It will be more natural and efficient way for users to enter text using a pen than keyboard and mouse. To identify the difference between similar characters in Malayalam a novel feature extraction method has been adopted-a combination of context bitmap and normalized (x, y) coordinates. The system reported an accuracy of 88.75% which is writer independent with a recognition time of 15-32 milliseconds
Resumo:
This paper presents a novel approach to recognize Grantha, an ancient script in South India and converting it to Malayalam, a prevalent language in South India using online character recognition mechanism. The motivation behind this work owes its credit to (i) developing a mechanism to recognize Grantha script in this modern world and (ii) affirming the strong connection among Grantha and Malayalam. A framework for the recognition of Grantha script using online character recognition is designed and implemented. The features extracted from the Grantha script comprises mainly of time-domain features based on writing direction and curvature. The recognized characters are mapped to corresponding Malayalam characters. The framework was tested on a bed of medium length manuscripts containing 9-12 sample lines and printed pages of a book titled Soundarya Lahari writtenin Grantha by Sri Adi Shankara to recognize the words and sentences. The manuscript recognition rates with the system are for Grantha as 92.11%, Old Malayalam 90.82% and for new Malayalam script 89.56%. The recognition rates of pages of the printed book are for Grantha as 96.16%, Old Malayalam script 95.22% and new Malayalam script as 92.32% respectively. These results show the efficiency of the developed system
Resumo:
Handwritten character recognition is always a frontier area of research in the field of pattern recognition and image processing and there is a large demand for OCR on hand written documents. Even though, sufficient studies have performed in foreign scripts like Chinese, Japanese and Arabic characters, only a very few work can be traced for handwritten character recognition of Indian scripts especially for the South Indian scripts. This paper provides an overview of offline handwritten character recognition in South Indian Scripts, namely Malayalam, Tamil, Kannada and Telungu
Resumo:
This paper presents the application of wavelet processing in the domain of handwritten character recognition. To attain high recognition rate, robust feature extractors and powerful classifiers that are invariant to degree of variability of human writing are needed. The proposed scheme consists of two stages: a feature extraction stage, which is based on Haar wavelet transform and a classification stage that uses support vector machine classifier. Experimental results show that the proposed method is effective
Resumo:
The objective of the study is to develop a hand written character recognition system that could recognisze all the characters in the mordern script of malayalam language at a high recognition rate
Resumo:
The Schiff base, 3-hydroxyquinoxaline-2-carboxalidine-4-aminoantipyrine, was synthesized by the condensation of 3-hydroxyquinoxaline-2-carboxaldehyde with 4-aminoantipyrine. HPLC, FT-IR and NMR spectral data revealed that the compound exists predominantly in the amide tautomeric form and exhibits both absorption and fluorescence solvatochromism, large stokes shift, two electron quasireversible redox behaviour and good thermal stability, with a glass transition temperature of 104oC. The third-order non-linear optical character was studied using open aperture Z-scan methodology employing 7 ns pulses at 532 nm. The third-order non-linear absorption coefficient, b, was 1.48 x 10-6 cm W-1 and the imaginary part of the third-order non-linear optical susceptibility, Im c(3), was 3.36 x10-10 esu. The optical limiting threshold for the compound was found to be 340 MW cm-2.
Resumo:
The Schiff base, 3-hydroxyquinoxaline-2-carboxalidine-4-aminoantipyrine, was synthesized by the condensation of 3-hydroxyquinoxaline-2-carboxaldehyde with 4-aminoantipyrine. HPLC, FT-IR and NMR spectral data revealed that the compound exists predominantly in the amide tautomeric form and exhibits both absorption and fluorescence solvatochromism, large stokes shift, two electron quasireversible redox behaviour and good thermal stability, with a glass transition temperature of 104 oC. The third-order non-linear optical character was studied using open aperture Z-scan methodology employing 7 ns pulses at 532 nm. The third-order non-linear absorption coefficient, b, was 1.48 x 10-6 cm W-1 and the imaginary part of the third-order non-linear optical susceptibility, Im c(3), was 3.36x10-10 esu. The optical limiting threshold for the compound was found to be 340 MW cm-2.
Resumo:
In this paper, we propose a handwritten character recognition system for Malayalam language. The feature extraction phase consists of gradient and curvature calculation and dimensionality reduction using Principal Component Analysis. Directional information from the arc tangent of gradient is used as gradient feature. Strength of gradient in curvature direction is used as the curvature feature. The proposed system uses a combination of gradient and curvature feature in reduced dimension as the feature vector. For classification, discriminative power of Support Vector Machine (SVM) is evaluated. The results reveal that SVM with Radial Basis Function (RBF) kernel yield the best performance with 96.28% and 97.96% of accuracy in two different datasets. This is the highest accuracy ever reported on these datasets
Resumo:
Among various optical sensing schemes, infrared spectroscopy is a powerful tool for detecting and determining the composition of complex organic samples since vibrational finger prints of all biomolecules and organic species are located in this window. This spectroscopic technique is simple, reliable, fast, non-destructive, cost-effective while having low sensitivity. Use of metallic nanoparticles in association with a good IR transparent sensing substrate, is one of the promising solutions to enhance the sensitivity. Chalcogenide glasses are promising substrate material because of their extended optical transmission window starting from the visible to the far infrared range up to 20 μm, high refractive index usually between 2 and 3 and high optical nonlinearity, which make them good candidates as IR sensors and optical ultrafast nonlinear devices. These glasses are favorable sensor materials for the infrared spectral range because of their high IR transparency to allow for low optical loss at wavelengths corresponding to the characteristic optical absorption bands of organic molecules, high refractive index for tight confinement of optical energy within the resonator structure, processibility into thin film form, chemical compatibility for adhesion of silver nano particles and thin films and resistance to the chemical environment to be sensed. Molecules adsorbed to silver island structures shows enhanced IR absorption spectra and the extent of enhancement is determined by many factors such as the size, density and morphology of silver structures, optical and dielectric properties of the substrate material etc.
Resumo:
A new procedure for the classification of lower case English language characters is presented in this work . The character image is binarised and the binary image is further grouped into sixteen smaller areas ,called Cells . Each cell is assigned a name depending upon the contour present in the cell and occupancy of the image contour in the cell. A data reduction procedure called Filtering is adopted to eliminate undesirable redundant information for reducing complexity during further processing steps . The filtered data is fed into a primitive extractor where extraction of primitives is done . Syntactic methods are employed for the classification of the character . A decision tree is used for the interaction of the various components in the scheme . 1ike the primitive extraction and character recognition. A character is recognized by the primitive by primitive construction of its description . Openended inventories are used for including variants of the characters and also adding new members to the general class . Computer implementation of the proposal is discussed at the end using handwritten character samples . Results are analyzed and suggestions for future studies are made. The advantages of the proposal are discussed in detail .
Resumo:
Handwriting is an acquired tool used for communication of one's observations or feelings. Factors that inuence a person's handwriting not only dependent on the individual's bio-mechanical constraints, handwriting education received, writing instrument, type of paper, background, but also factors like stress, motivation and the purpose of the handwriting. Despite the high variation in a person's handwriting, recent results from different writer identification studies have shown that it possesses sufficient individual traits to be used as an identification method. Handwriting as a behavioral biometric has had the interest of researchers for a long time. But recently it has been enjoying new interest due to an increased need and effort to deal with problems ranging from white-collar crime to terrorist threats. The identification of the writer based on a piece of handwriting is a challenging task for pattern recognition. The main objective of this thesis is to develop a text independent writer identification system for Malayalam Handwriting. The study also extends to developing a framework for online character recognition of Grantha script and Malayalam characters
Resumo:
Investigations on thin films that started decades back due to scientific curiosity in the properties of a two-dimensional solid, has developed into a leading research field in recent years due to the ever expanding applications of the thin films in the fann of a variety of active and passive microminiaturized components and devices, solar cells, radiation sowces and detectors, magnetic memory devices, interference filters, refection and antireflection coatings etc. [1]. The recent environment and energy resource concerns have aroused an enonnous interest in the study of materials in thin film form suitable for renewable energy sources such as photovoltaic devices. Recognition of the immense potential applications of the chalcopyrites that can fonn homojunctions or heterojunctions for solar cell fabrication has attracted many researchers to extensive and intense research on them. In this thesis, we have started with studies performed on CuInSe, thin films, a technologically well recognized compound belonging to the l•ill-VI family of semiconductors and have riveted on investigations on the preparation and characterization of compoWlds Culn3Se5. Culn5Seg and CuIn7Se12, an interesting group of compounds related to CuInSe2 called Ordered Vacancy Compounds, having promising applications in photovoltaic devices. A pioneering work attempted on preparing and characterizing the compound Culn7Sel2 is detailed in the chapters on OVC's. Investigation on valence band splitting in avc's have also been attempted for the first time and included as the last chapter in the thesis. Some of the salient features of the chalcopyrite c.ompounds are given in the next section .of this introductory chapter.
Resumo:
This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films