6 resultados para Optical Imaging

em Cochin University of Science


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The thesis deals with the preparation of chemical, optical, thermal and electrical characterization of five compounds, namely metal free naphthalocyanine, vanadyl napthalocyanine, zinc naphlocyanine, europium dinaphthalocyanine, and europium diphthalocyanine in the pristine and iodine-doped forms. Two important technological properties of these compounds have been investigated. The electrical properties are important in applications sensors and semiconductor lasers. Opto-thermal properties assume significance for optical imaging and data recording. The electrical properties were investigated by dc and ac techniques. This work has revealed some novel information on the conduction mechanism in five macrocyclic compounds and their iodine-doped forms. Also useful data on the thermal diffusivity of the target compounds have been obtained by optical techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Breast cancer is the most common non - skin malignancy in women and a leading cause of female morality. A potentially important strategy for reducing this menace is the detection at an early stage . The invention of non-invasive and non-ionizing microwave technique, to reveal the internal structure of biological objects was a break through in the field of medical diagnostics. Electrical properties of biological tissues and their interaction with electromagmetic waves have direct impact on human life. This thesis focuses on theoretical and experimental investigations of active microwave imaging techniques for breast cancer detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser induced plasma (LIP) emissions from some metal oxide targets were studied with corresponding metal targets of pure quality as a reference. Atomic emissions in the visible region were used in the spectroscopic procedures of LIP characterization. The studies were meant to throw light into LIP dynamics and they provided many experimental results which improved the general awareness of plasma state.When target materials were photo-ablated with an energetically suitable laser pulse, they developed electric charges in them.An electrical signal which was delivered from the target served as an alternative probe signal for the diagnostics of LIP and to track different charged states in the plasma. The signal showed a double peak distribution with positive polarity and a modified time of flight with various voltage levels of a given polarity.The expansion dynamics of LIP in magnetic field were also investigated by monitoring the voltage transients generated at the target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A phantom that exhibits complex dielectric properties similar to low-water-content biological tissues over the electromagnetic spectrum of 2000–3000 MHz has been synthesized from carbon black, graphite powder, and poly vinyl acetate (PVA)-based adhesive. The material overcomes various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the material for various concentrations of carbon and graphite are studied. A combination of 50% poly-vinyl-acetate-based adhesive, 20% carbon, and 30% graphite exhibits a high absorption coefficient, which suggests another application of the material as a good microwave absorber for the interior lining of tomographic chamber in microwave imaging. The cavity-perturbation technique is adopted to study the dielectric properties of the material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall focus of the thesis involves the synthesis and characterization of CdSe QDs overcoated with shell materials for various biological and chemical sensing applications. Second chapter deals with the synthesis and characterization of CdSe and CdSe/ZnS core shell QDs. The primary attention of this work is to develop a simple method based on photoinduced charge transfer to optimize the shell thickness. Synthesis of water soluble CdSe QDs, their cytotoxicity analysis and investigation of nonlinear optical properties form the subject of third chapter. Final chapter deals with development of QD based sensor systems for the selective detection of biologically and environmentally important analytes from aqueous media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence is a powerful tool in biological research, the relevance of which relies greatly on the availability of sensitive and selective fluorescent probes. Nanometer sized fluorescent semiconductor materials have attracted considerable attention in recent years due to the high luminescence intensity, low photobleaching, large Stokes’ shift and high photochemical stability. The optical and spectroscopic features of nanoparticles make them very convincing alternatives to traditional fluorophores in a range of applications. Efficient surface capping agents make these nanocrystals bio-compatible. They can provide a novel platform on which many biomolecules such as DNA, RNA and proteins can be covalently linked. In the second phase of the present work, bio-compatible, fluorescent, manganese doped ZnS (ZnS:Mn) nanocrystals suitable for bioimaging applications have been developed and their cytocompatibility has been assessed. Functionalization of ZnS:Mn nanocrystals by safe materials results in considerable reduction of toxicity and allows conjugation with specific biomolecules. The highly fluorescent, bio-compatible and water- dispersible ZnS:Mn nanocrystals are found to be ideal fluorescent probes for biological labeling