17 resultados para One-Sided Growth

em Cochin University of Science


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study was initiated when several massive outbreaks of Chikungunya, Dengue and Japanese Encephalitis were frequently reported across the State of Kerala. Multiple symptoms persisted among the affected individuals and the public health officials were in search of aetiological agents responsible for the out breaks and, other than clinical samples no resources were available. In this context, a study was undertaken to focus on mosquito larvae to investigate the viruses borne by them which remain silently prevalent in the environment. The study was not a group specific investigation limited to either arbovirus or enterovirus, but had a broad spectrum approach. The study encompassed the viral pathogens that could be isolated, their impact when passaged through cell lines, growth kinetics, titer of the working stocks in specific cell line, the structure by means of transmission electron microscopy(TEM), the one step growth and molecular characterization using molecular tools.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the interesting consequences of Einstein's General Theory of Relativity is the black hole solutions. Until the observation made by Hawking in 1970s, it was believed that black holes are perfectly black. The General Theory of Relativity says that black holes are objects which absorb both matter and radiation crossing the event horizon. The event horizon is a surface through which even light is not able to escape. It acts as a one sided membrane that allows the passage of particles only in one direction i.e. towards the center of black holes. All the particles that are absorbed by black hole increases the mass of the black hole and thus the size of event horizon also increases. Hawking showed in 1970s that when applying quantum mechanical laws to black holes they are not perfectly black but they can emit radiation. Thus the black hole can have temperature known as Hawking temperature. In the thesis we have studied some aspects of black holes in f(R) theory of gravity and Einstein's General Theory of Relativity. The scattering of scalar field in this background space time studied in the first chapter shows that the extended black hole will scatter scalar waves and have a scattering cross section and applying tunneling mechanism we have obtained the Hawking temperature of this black hole. In the following chapter we have investigated the quasinormal properties of the extended black hole. We have studied the electromagnetic and scalar perturbations in this space-time and find that the black hole frequencies are complex and show exponential damping indicating the black hole is stable against the perturbations. In the present study we show that not only the black holes exist in modified gravities but also they have similar properties of black hole space times in General Theory of Relativity. 2 + 1 black holes or three dimensional black holes are simplified examples of more complicated four dimensional black holes. Thus these models of black holes are known as toy models of black holes in four dimensional black holes in General theory of Relativity. We have studied some properties of these types of black holes in Einstein model (General Theory of Relativity). A three dimensional black hole known as MSW is taken for our study. The thermodynamics and spectroscopy of MSW black hole are studied and obtained the area spectrum which is equispaced and different thermo dynamical properties are studied. The Dirac perturbation of this three dimensional black hole is studied and the resulting quasinormal spectrum of this three dimensional black hole is obtained. The different quasinormal frequencies are tabulated in tables and these values show an exponential damping of oscillations indicating the black hole is stable against the mass less Dirac perturbation. In General Theory of Relativity almost all solutions contain singularities. The cosmological solution and different black hole solutions of Einstein's field equation contain singularities. The regular black hole solutions are those which are solutions of Einstein's equation and have no singularity at the origin. These solutions possess event horizon but have no central singularity. Such a solution was first put forward by Bardeen. Hayward proposed a similar regular black hole solution. We have studied the thermodynamics and spectroscopy of Hay-ward regular black holes. We have also obtained the different thermodynamic properties and the area spectrum. The area spectrum is a function of the horizon radius. The entropy-heat capacity curve has a discontinuity at some value of entropy showing a phase transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study made an attempt to analyse the structure, performance and growth of women industrial cooperatives in kannur district, Kerala. The study encompasses all women industrial cooperatives registered at the district industries center, kannur and that currently exist. The women industrial cooperatives are classified into two ie; group with network and another group without network. In Kannur there are 54 units working as women industrial cooperatives. One of the main problems the women cooperatives face is the lack of working capital followed marketing problem. The competition between cooperatives and private traders is very high. The variables examined to analyse the performance of women industrial cooperatives in Kannur showed that there exists inter unit differences in almost all the variables. The financial structure structure shows that the short term liquidity of women cooperatives in Kannur favour more the units which have political networks; but the long term financial coverage is seen to be highly geared in this group, not because of a decline is net worth but due to highly proportionate increase in financial liabilities in the form of borrowings. The encouragement given by the government through financial stake and other incentives has been the major factor in the formation and growth of women cooperatives. As a result both productivity and efficiency improves in the cooperatives. In short the present study helped to capture the impact, role and dynamics of networking in general and socio political network in particular in relation to intra and inter unit differences on the structure, growth and performance of women industrial cooperatives societies in Kannur district

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing interest in the interaction of light with electricity and electronically active materials made the materials and techniques for producing semitransparent electrically conducting films particularly attractive. Transparent conductors have found major applications in a number of electronic and optoelectronic devices including resistors, transparent heating elements, antistatic and electromagnetic shield coatings, transparent electrode for solar cells, antireflection coatings, heat reflecting mirrors in glass windows and many other. Tin doped indium oxide (indium tin oxide or ITO) is one of the most commonly used transparent conducting oxides. At present and likely well into the future this material offers best available performance in terms of conductivity and transmittivity combined with excellent environmental stability, reproducibility and good surface morphology. Although partial transparency, with a reduction in conductivity, can be obtained for very thin metallic films, high transparency and simultaneously high conductivity cannot be attained in intrinsic stoichiometric materials. The only way this can be achieved is by creating electron degeneracy in a wide bandgap (Eg > 3eV or more for visible radiation) material by controllably introducing non-stoichiometry and/or appropriate dopants. These conditions can be conveniently met for ITO as well as a number of other materials like Zinc oxide, Cadmium oxide etc. ITO shows interesting and technologically important combination of properties viz high luminous transmittance, high IR reflectance, good electrical conductivity, excellent substrate adherence and chemical inertness. ITO is a key part of solar cells, window coatings, energy efficient buildings, and flat panel displays. In solar cells, ITO can be the transparent, conducting top layer that lets light into the cell to shine the junction and lets electricity flow out. Improving the ITO layer can help improve the solar cell efficiency. A transparent ii conducting oxide is a material with high transparency in a derived part of the spectrum and high electrical conductivity. Beyond these key properties of transparent conducting oxides (TCOs), ITO has a number of other key characteristics. The structure of ITO can be amorphous, crystalline, or mixed, depending on the deposition temperature and atmosphere. The electro-optical properties are a function of the crystallinity of the material. In general, ITO deposited at room temperature is amorphous, and ITO deposited at higher temperatures is crystalline. Depositing at high temperatures is more expensive than at room temperature, and this method may not be compatible with the underlying devices. The main objective of this thesis work is to optimise the growth conditions of Indium tin oxide thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The films are also deposited on to flexible substrates by employing bias sputtering technique. The films thus grown were characterised using different tools. A powder x-ray diffractometer was used to analyse the crystalline nature of the films. The energy dispersive x-ray analysis (EDX) and scanning electron microscopy (SEM) were used for evaluating the composition and morphology of the films. Optical properties were investigated using the UVVIS- NIR spectrophotometer by recording the transmission/absorption spectra. The electrical properties were studied using vander Pauw four probe technique. The plasma generated during the sputtering of the ITO target was analysed using Langmuir probe and optical emission spectral studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent conducting oxides (TCO’s) have been known and used for technologically important applications for more than 50 years. The oxide materials such as In2O3, SnO2 and impurity doped SnO2: Sb, SnO2: F and In2O3: Sn (indium tin oxide) were primarily used as TCO’s. Indium based oxides had been widely used as TCO’s for the past few decades. But the current increase in the cost of indium and scarcity of this material created the difficulty in obtaining low cost TCO’s. Hence the search for alternative TCO material has been a topic of active research for the last few decades. This resulted in the development of various binary and ternary compounds. But the advantages of using binary oxides are the easiness to control the composition and deposition parameters. ZnO has been identified as the one of the promising candidate for transparent electronic applications owing to its exciting optoelectronic properties. Some optoelectronics applications of ZnO overlap with that of GaN, another wide band gap semiconductor which is widely used for the production of green, blue-violet and white light emitting devices. However ZnO has some advantages over GaN among which are the availability of fairly high quality ZnO bulk single crystals and large excitonic binding energy. ZnO also has much simpler crystal-growth technology, resulting in a potentially lower cost for ZnO based devices. Most of the TCO’s are n-type semiconductors and are utilized as transparent electrodes in variety of commercial applications such as photovoltaics, electrochromic windows, flat panel displays. TCO’s provide a great potential for realizing diverse range of active functions, novel functions can be integrated into the materials according to the requirement. However the application of TCO’s has been restricted to transparent electrodes, ii notwithstanding the fact that TCO’s are n-type semiconductors. The basic reason is the lack of p-type TCO, many of the active functions in semiconductor originate from the nature of pn-junction. In 1997, H. Kawazoe et al reported the CuAlO2 as the first p-type TCO along with the chemical design concept for the exploration of other p-type TCO’s. This has led to the fabrication of all transparent diode and transistors. Fabrication of nanostructures of TCO has been a focus of an ever-increasing number of researchers world wide, mainly due to their unique optical and electronic properties which makes them ideal for a wide spectrum of applications ranging from flexible displays, quantum well lasers to in vivo biological imaging and therapeutic agents. ZnO is a highly multifunctional material system with highly promising application potential for UV light emitting diodes, diode lasers, sensors, etc. ZnO nanocrystals and nanorods doped with transition metal impurities have also attracted great interest, recently, for their spin-electronic applications This thesis summarizes the results on the growth and characterization of ZnO based diodes and nanostructures by pulsed laser ablation. Various ZnO based heterojunction diodes have been fabricated using pulsed laser deposition (PLD) and their electrical characteristics were interpreted using existing models. Pulsed laser ablation has been employed to fabricate ZnO quantum dots, ZnO nanorods and ZnMgO/ZnO multiple quantum well structures with the aim of studying the luminescent properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It examine the aspects of Madhya Pradesh’s industrial structure which throw light on the development, viability and the efficiency of not only the over all industrial sector but also some of the selected industries of the state. The major objectives of are to examine the nature and characteristics of economic backwardness in Madhya Pradesh in an inter-state comparative framework and to analyse the pace and pattern of industrial growth in Madhya Pradesh against the backdrop of liberalization. To explore the industrial structure of Madhya Pradesh using the major structural ratios and industry mix. This study has underlined some structural as well as region specific constraints to the accelerated growth of the manufacturing industry in Madhya Pradesh. The industrial structure of Madhya Pradesh is concentrated and lop-sided. This is evidenced by the dominancy of single industry, basic metal and alloys. A diversified industrial structure is essential for promoting interdependent growth of the manufacturing industry based on the inter-industry linkages and agglomeration. The thesis gives a broad spectrum of regional disparities in development and evidence for Madhya Pradesh’s backwardness also portrayed and reflects the changing industrial structure of the state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the present study, it is clear that all the three metals, selenium, molybdenum and cobalt have significant effect on the antioxidant status of the shrimps. Selenium and molybdenum were observed to induce peroxidative damage at elevated levels. But at the same level, cobalt did not show such an effect. Selenium was found to be growth promoting at lower levels of dietary supplementation. Even though low levels of dietary selenium had a protective effect against the lipid peroxidation, the present study indicates that high levels of dietary selenium could promote lipid peroxidation. The selenium-dependent antioxidant enzyme, GPx behaved differently in muscle and hepatopancreas. A high concentration of selenium was required for the active expression of the enzyme in the muscle, where as in hepatopancreas maximum activity was observed at lower selenium concentration. Selenium supplementation had a positive effect on GSH concentration. The other antioxidant enzymes such as GST, SOD and CAT showed enhanced activity at higher concentration of selenium. Molybdenum supplementation significantly reduced the free radical scavenger enzymes SOD and CAT. This resulted in enhanced lipid peroxidation in tissues. The activity of antioxidant enzyme GPx and the concentration of the substrate for the enzyme, GSH also were lower at elevated levels of molybdenum supplementation. In addition to this amino acids and fatty acids were also altered in molybdenum supplemented groups. In trace amounts, dietary molybdenum exerts a beneficial effect on the growth and also in the activities of the enzymes XO and SO. At the same time it also indicates a possibility of oxidative damage as a result of the peroxidation caused by the activities of the enzymes SO and XO at elevated concentrations of molybdenum is also indicated. The absorption of various trace elements was also altered by molybdenum supplementation.Among the three metals studied, cobalt was the least toxic one at the administered levels. But this metal has a significant effect on the lipid content, amino acid composition, cholesterol levels and phospholipid levels. Increased growth was also observed as a result of cobalt supplementation in shrimps. The antioxidant system of the animal was activated by dietary cobalt. Tissue levels of the trace metals were also found to be altered in cobalt supplemented groups of shrimps.These studies, thus shows that influence of dietary trace metals calls for more detailed studies in farmed shrimp. They may hold the key to growth and even disease resistance in shrimp. But this still remains as a virgin field which demands more attention, especially in view of the increasing importance of shrimp farming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past few decades, a wide spread interest in the structural, optical, electrical and other physical properties of the transition metal dichalcogenide layer compounds has evolved. The members of this family of compounds can be regarded as strongly bonded two dimensional chalcogen-metal~chalcogen layers which are loosely coupled to one another by the weak ven der Waal's forces. Because of this type of bonding, the crystals are easily cleavable along the basal plane and show highly anisotropic properties. This thesis contains the growth and the study of the physical properties of certain tin dichalcogenide crystals (SnS2 and SnSe2). Tin disulphide and tin diselenide crystallize in the hexagonal CdI2 type crystal structure. This structure consists of layers of tin atoms sandwiched between two layers of chalcogen atoms. A tin atom is surrounded by six chalcogen atoms octahedrally.In the layers the atoms are held together by covalent bonding and in between the layers there is van der Waal's bonding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past few decades, a wide spread interest in the structural, optical, electrical and other physical properties of the transition metal dichalcogenide layer compounds has evolved. The members of this family of compounds can be regarded as stronglybonded two dimensional chalcogen-metal-chalcogen layers which are loosely coupled to one another by the weak van der Waal's forces. Because of this type of bonding, the crystals are easily cleavable along the basal plane and show highly anisotropic properties. This thesis contains the growth and the study of the physical properties of certain tin dichalcogenide crystals (SnS2 and Snsea). Tin disulphide and tin diselenide crystallize in the hexagonal CdI2 type crystalstructure. This structure consists of layers of tin atoms sandwiched between two layers of chalcogen atoms. Aitin atom is surrounded by six chalcogen atoms octahedrally. In the layers the atoms are held together by covalent bonding and in between the layers there is van der Waal's bonding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquatic ecosystem in the south west coast of India is noted for its diversity of habitats. Very often these environments turn bluegreen when the bloom of bluegreen algae (cyanobacteria) appear consequent to eutrophication. This phenomenon occursin these habitats one after the other or simultaneously. This conspicuousness make one curious enough to know more about these nature’s gift bestowed upon mankind. While persuing the literature on the magnificent flora) it is understood that it may provide food fertilizer, chemicals and bioactive substances. These bioactive substances are likely to be involved in regulating natural populations and are potentially useful as biochemical tools and as herbicidal or biocontrol agents. The role of cyanobacteria in the aquatic food chain and contribution in abatement of heavy metals from the natural environment are well documented. Considering the manifold utilization of the flora and their significance in the food chain, the present investigation has been undertaken

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physical properties of solid matter are basically influenced by the existence of lattice defects; as a result the study of crystal defects has assumed a central position in solid state physics and materials science. The study of dislocations ixa single crystals can yield a great deal of information on the mechanical properties of materials. In order to secure a full understanding of the processes taking place in semiconducting materials, it is important to investigate the microhardness of these materials-—the most reliable method of determining the fine structure of crystals, the revelation of micro—inhomogenities in the distribution of impurities, the effect of dislocation density on the mechanical properties of crystals etc. Basically electrical conductivity in single crystals is a defect controlled phenomenon and hence detailed investigation of the electrical properties of these materials is one of the best available methods for the study of defects in them. In the present thesis a series of detailed studies carried out in Te—Se system, Bi2Te3 and In2Te3 crystals using surface topographical, dislocation and microindentation analysis as well as electrical measurements are presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The source of samonella cross contamination in 15 retail chicken outlets in aresidual area in coimbatore city ,sourthern India was studied. Chopping boards and the butchers hands were predominant followed by knives and the weighing balance tray. Serotyping of the salmonella strains revealed that all strains were salmonella enteritis, except one which was found to be salmonella cerro.The anti bacterial activity of commonly used spices were evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cobalt nanotubes (CoNTs) with very high longitudinal coercivity were prepared by electrodeposition of cobalt acetate for the first time by using anodized alumina (AAO) template. They were then characterized with X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), and a transmission electron microscope (TEM). Formation of a highly ordered hexagonal cobalt phase is observed. Room temperature SQUID (superconducting quantum interference device) magnetometer measurements indicate that the easy axis of magnetization is parallel to the nanotube axis. These CoNTs exhibit very high longitudinal coercivity of ∼820 Oe. A very high intertubular interaction resulting from magnetostatic dipolar interaction between nanotubes is observed. Thick-walled nanotubes were also fabricated by using cobalt acetate tetrahydrate precursors. A plausible mechanism for the formation of CoNTs based on mobility assisted growth is proposed. The role of the hydration layer and the mobility of metal ions are elucidated in the case of the growth mechanism of one-dimensional geometry