33 resultados para Oceanic variability

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study brings out the influence of transport dynamics on the aerosol distribution over the Indian region at a few selected geographically distinct locations. Over the Bay of Bengal the dominant pathway of aerosol transport during the pre-monsoon period is through higher altitudes (~ 3 km); directed from the Indian main land. In contrast, the aerosol pathways over the Arabian Sea during the same period are quite complex. They are directed from geographically different environments around the ocean through different altitudes. However in general, the day-to-day variability of AOD at both these regions is significantly influenced by the features of atmospheric circulation especially, the wind convergence at higher altitudes (around 3 km). Over the Ganga Basin during the winter period, the wind convergence at lower altitudes (< I km) govems the shon term variations in AOD, while the mean AOD distribution at this location is mainly governed by the local anthropogenic sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arabian Sea is an area of complex air-sea interaction processes with seasonal reversing monsoons. The associated thermohaline variability in the upper layers appears to control the large scale monsoon flow which is not yet completely understood. The variability in the thermohaline fields is known to occur in temporal domain ranging from intra-diurnal to inter-annual time scales and on spatial domains of few tens of kilometers to few thousands of kilometers. In the Arabian Sea though the surface temperature was routinely measured by both conventional measurements and satellites, the corresponding information on the subsurface thermohaline field is very sparse due to the lack cw adequate measurements. In such cases the numerical models offer promise in providing information on the subsurface features given an initial thermohaline field and surface heat flux boundary conditions. This thesis is an outcome of investigations carried out on the various aspects of the thermohaline variability on different time scales. In addition to the description of the mean annual cycle. the one dimensional numerical models of Miller (1976) and Price et a1 (1986) are utilised to simulate the observed mixed layer characteristics at selected locations in the Arabian Sea on time scales ranging from intra-diurnal to synoptic scales under variable atmospheric forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on the south –west monsoon rainfall over Kerala and its variability both on the spatial and temporal scales. The main objectives of the study are, interanual, long-term and decadal variabilities in MRF(monsoon rain fall),relationship between antecedent global circulation parameters, diurnal variability using data of a large number of stations in Kerala and the spatial distribution of rainfall under two large scale synoptic. Kerala gets nearly 190cm of rainfall during the south-west monsoon season 1st June to 30th September. This is more than twice the monsoon rainfall of India. A good part of kerala’s rainfall is caused by the orography of the Western Ghats Mountain ranges. The state receives 286cm of annual rainfall of which 68%is during the south-west monsoon season. The summer monsoon rainfall of Kerala shows a decreasing trend of 12.0%in 96 years. The study shows that the Intra Seasonal Oscillations(ISO) of the monsoon season has large interanual variability,some years having long period and other years having short period ISO. It is seen that Western Ghats has a strong control on the east west profile on the monsoon rainfall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study on the vertical structure of horizontal wind variability in the surface boundary layer over Sriharikota. Based on clock wind speed and direction measuring meteorological tower facility from seven levels in the 100 m layer. The study on wind variability and elliptical approximation of wind hodographs investigated for this tropical coastal station established that Sriharikota is of meso-scale weather entity. Wind variability ratio increases from lower levels to upper levels. In South West monsoon months the station is of high ratio values and it gets affected with meso-scale weather features like thunderstorms. Average total shears are observed greater values than scalar shears. Scalar shears are high in the lowest shear levels compared to upper levels. Semi diurnal types of oscillation in average total shears are found in south west monsoon months. During cyclonic storm passage it is observed that there can be significant difference in mean wind speed from 10 m to 100 m level, but it is not so for peak wind speeds. The variations in wind variability ratio in different months is clearly depicted its strong link to define meso-scale or synoptic –scale forcing domination for this station. Meso-scale forcing is characterized by diurnal wind variability and synoptic- scale forcing by interdiurnal wind variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of the of present study are to study the intraseasonal variability of LLJ and its relation with convective heating of the atmosphere, to establish whether LLJ splits into two branches over the Arabian sea as widely believed, the role of horizonatal wind shear of LLJ in the episodes of intense rainfall events observed over the west coast of India, to perform atmospheric modeling work to test whether small (meso) scale vortices form during intense rainfall events along the west coast; and to study the relation between LLJ and monsoon depression genesis. The results of a study on the evolution of Low Level Jetstream (LLJ) prior to the formation of monsoon depressions are presented. A synoptic model of the temporal evolution of monsoon depression has been produced. There is a systematic temporal evolution of the field of deep convection strength and position of the LLJ axis leading to the genesis of monsoon depression. One of the significant outcomes of the present thesis is that the LLJ plays an important role in the intraseasonal and the interannual variability of Indian monsoon activity. Convection and rainfall are dependent mainly on the cyclonic vorticity in the boundary layer associated with LLJ. Monsoon depression genesis and the episodes of very heavy rainfall along the west coast of India are closely related to the cyclonic shear of the LLJ in the boundary layer and the associated deep convection. Case studies by a mesoscale numerical model (MM5) have shown that the heavy rainfall episodes along the west coast of India are associated with generation of mesoscale cyclonic vortices in the boundary layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study is to understand the spatial and temporal variability of sea surface temperature(SST), precipitable water, zonal and meridional components of wind stress over the tropical Indian Ocean to understand the different scales of variability of these features of Indian Ocean. Empirical Orthogonal Function (EOF) and wavelet analysis techniques are utilized to understand the standing oscillations and multi scale oscillations respectively. The study has been carried out over Indian Ocean and South Indian Ocean. For the present study, NCEP/NCAR(National Center for Environmental Prediction National Center for Atmospheric Research) reanalyzed daily fields of sea surface temperature, zonal and meridional surface wind components and precipitable water amount during 1960-1998 are used. The principle of EOF analysis and the methodology used for the analysis of spatial and temporal variance modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study deals with the generation of variability for salt tolerance in rice using tissue culture techniques. Rice is the staple food of more than half of the world’s population. The management of drought, salinity and acidity in soils are all energy intensive agricultural practices. The Genetic variability is the basis of crop improvement. Somaclonal and androclonal variation can be effectively used for this purpose. In the present study, eight isozymes were studied and esterase and isocitric dehydrogenase was found to have varietal specific, developmental stage specific and stress specific banding pattern in rice. Under salt stress thickness of bands and enzyme activity showed changes. Pokkali, a moderately salt tolerant variety, had a specific band 7, which was present only in this variety and showed slight changes under stress. This band was faint in tillering and flowering stage .Based on the results obtained in the present study it is suggested that esterase could possibly be used as an isozyme marker for salt tolerance in rice. Varietal differences and stage specific variations could be detected using esterase and isocitric dehydrogenase . Moreover somaclonal and androclonal variation could be effectively detected using isozyme markers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study illustrates the biennial oscillation in different ocean-atmosphere parameters associated with interannual variability of Indian summer monsoon rainfall.It also accounts the role of different processes like ENSO, IOD, QBO and ISO in the monsoon variability during the TBO years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increase in sea surface temperature with global warming has an impact on coastal upwelling. Past two decades (1988 to 2007) of satellite observed sea surface temperatures and space borne scatterometer measured winds have provided an insight into the dynamics of coastal upwelling in the southeastern Arabian Sea, in the global warming scenario. These high resolution data products have shown inconsistent variability with a rapid rise in sea surface temperature between 1992 and 1998 and again from 2004 to 2007. The upwelling indices derived from both sea surface temperature and wind have shown that there is an increase in the intensity of upwelling during the period 1998 to 2004 than the previous decade. These indices have been modulated by the extreme climatic events like El–Nino and Indian Ocean Dipole that happened during 1991–92 and 1997–98. A considerable drop in the intensity of upwelling was observed concurrent with these events. Apart from the impact of global warming on the upwelling, the present study also provides an insight into spatial variability of upwelling along the coast. Noticeable fact is that the intensity of offshore Ekman transport off 8oN during the winter monsoon is as high as that during the usual upwelling season in summer monsoon. A drop in the meridional wind speed during the years 2005, 2006 and 2007 has resulted in extreme decrease in upwelling though the zonal wind and the total wind magnitude are a notch higher than the previous years. This decrease in upwelling strength has resulted in reduced productivity too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upwelling regions occupies only a small portion of the global ocean surface. However it accounts for a large fraction of the oceanic primary production as well as fishery. Therefore understanding and quantifying the upwelling is of great importance for the marine resources management. Most of the coastal upwelling zones in the Arabian Sea are wind driven uniform systems. Mesoscale studies along the southwest coast of India have shown high spatial and temporal variability in the forcing mechanism and intensity of upwelling. There exists an equatorward component of wind stress as similar to the most upwelling zones along the eastern oceanic boundaries. Therefore an offshore component of surface Ekman transport is expected throughout the year. But several studies supported with in situ evidences have revealed that the process is purely recurring on seasonal basis. The explanation merely based on local wind forcing alone is not sufficient to support the observations. So, it is assumed that upwelling along the South Eastern Arabian Sea is an effect of basin wide wind forcing rather than local wind forcing. In the present study an integrated approach has been made to understand the process of upwelling of the South Eastern Arabian Sea. The latitudinal and seasonal variations (based on Sea Surface Temperature, wind forcing, Chlorophyll a and primary production), forcing mechanisms (local wind and remote forcing) and the factors influencing the system (Arabian Sea High Saline Water, Bay of Bengal water, runoff, coastal geomorphology) are addressed herewith.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.