8 resultados para Object based video
em Cochin University of Science
Resumo:
This paper presents a Robust Content Based Video Retrieval (CBVR) system. This system retrieves similar videos based on a local feature descriptor called SURF (Speeded Up Robust Feature). The higher dimensionality of SURF like feature descriptors causes huge storage consumption during indexing of video information. To achieve a dimensionality reduction on the SURF feature descriptor, this system employs a stochastic dimensionality reduction method and thus provides a model data for the videos. On retrieval, the model data of the test clip is classified to its similar videos using a minimum distance classifier. The performance of this system is evaluated using two different minimum distance classifiers during the retrieval stage. The experimental analyses performed on the system shows that the system has a retrieval performance of 78%. This system also analyses the performance efficiency of the low dimensional SURF descriptor.
Resumo:
Pedicle screw insertion technique has made revolution in the surgical treatment of spinal fractures and spinal disorders. Although X- ray fluoroscopy based navigation is popular, there is risk of prolonged exposure to X- ray radiation. Systems that have lower radiation risk are generally quite expensive. The position and orientation of the drill is clinically very important in pedicle screw fixation. In this paper, the position and orientation of the marker on the drill is determined using pattern recognition based methods, using geometric features, obtained from the input video sequence taken from CCD camera. A search is then performed on the video frames after preprocessing, to obtain the exact position and orientation of the drill. An animated graphics, showing the instantaneous position and orientation of the drill is then overlaid on the processed video for real time drill control and navigation
Resumo:
This paper presents methods for moving object detection in airborne video surveillance. The motion segmentation in the above scenario is usually difficult because of small size of the object, motion of camera, and inconsistency in detected object shape etc. Here we present a motion segmentation system for moving camera video, based on background subtraction. An adaptive background building is used to take advantage of creation of background based on most recent frame. Our proposed system suggests CPU efficient alternative for conventional batch processing based background subtraction systems. We further refine the segmented motion by meanshift based mode association.
Resumo:
Detection of Objects in Video is a highly demanding area of research. The Background Subtraction Algorithms can yield better results in Foreground Object Detection. This work presents a Hybrid CodeBook based Background Subtraction to extract the foreground ROI from the background. Codebooks are used to store compressed information by demanding lesser memory usage and high speedy processing. This Hybrid method which uses Block-Based and Pixel-Based Codebooks provide efficient detection results; the high speed processing capability of block based background subtraction as well as high Precision Rate of pixel based background subtraction are exploited to yield an efficient Background Subtraction System. The Block stage produces a coarse foreground area, which is then refined by the Pixel stage. The system’s performance is evaluated with different block sizes and with different block descriptors like 2D-DCT, FFT etc. The Experimental analysis based on statistical measurements yields precision, recall, similarity and F measure of the hybrid system as 88.74%, 91.09%, 81.66% and 89.90% respectively, and thus proves the efficiency of the novel system.
Resumo:
ACCURATE sensing of vehicle position and attitude is still a very challenging problem in many mobile robot applications. The mobile robot vehicle applications must have some means of estimating where they are and in which direction they are heading. Many existing indoor positioning systems are limited in workspace and robustness because they require clear lines-of-sight or do not provide absolute, driftfree measurements.The research work presented in this dissertation provides a new approach to position and attitude sensing system designed specifically to meet the challenges of operation in a realistic, cluttered indoor environment, such as that of an office building, hospital, industrial or warehouse. This is accomplished by an innovative assembly of infrared LED source that restricts the spreading of the light intensity distribution confined to a sheet of light and is encoded with localization and traffic information. This Digital Infrared Sheet of Light Beacon (DISLiB) developed for mobile robot is a high resolution absolute localization system which is simple, fast, accurate and robust, without much of computational burden or significant processing. Most of the available beacon's performance in corridors and narrow passages are not satisfactory, whereas the performance of DISLiB is very encouraging in such situations. This research overcomes most of the inherent limitations of existing systems.The work further examines the odometric localization errors caused by over count readings of an optical encoder based odometric system in a mobile robot due to wheel-slippage and terrain irregularities. A simple and efficient method is investigated and realized using an FPGA for reducing the errors. The detection and correction is based on redundant encoder measurements. The method suggested relies on the fact that the wheel slippage or terrain irregularities cause more count readings from the encoder than what corresponds to the actual distance travelled by the vehicle.The application of encoded Digital Infrared Sheet of Light Beacon (DISLiB) system can be extended to intelligent control of the public transportation system. The system is capable of receiving traffic status input through a GSM (Global System Mobile) modem. The vehicles have infrared receivers and processors capable of decoding the information, and generating the audio and video messages to assist the driver. The thesis further examines the usefulness of the technique to assist the movement of differently-able (blind) persons in indoor or outdoor premises of his residence.The work addressed in this thesis suggests a new way forward in the development of autonomous robotics and guidance systems. However, this work can be easily extended to many other challenging domains, as well.
Resumo:
The modern telecommunication industry demands higher capacity networks with high data rate. Orthogonal frequency division multiplexing (OFDM) is a promising technique for high data rate wireless communications at reasonable complexity in wireless channels. OFDM has been adopted for many types of wireless systems like wireless local area networks such as IEEE 802.11a, and digital audio/video broadcasting (DAB/DVB). The proposed research focuses on a concatenated coding scheme that improve the performance of OFDM based wireless communications. It uses a Redundant Residue Number System (RRNS) code as the outer code and a convolutional code as the inner code. The bit error rate (BER) performances of the proposed system under different channel conditions are investigated. These include the effect of additive white Gaussian noise (AWGN), multipath delay spread, peak power clipping and frame start synchronization error. The simulation results show that the proposed RRNS-Convolutional concatenated coding (RCCC) scheme provides significant improvement in the system performance by exploiting the inherent properties of RRNS.
Resumo:
Anticipating the increase in video information in future, archiving of news is an important activity in the visual media industry. When the volume of archives increases, it will be difficult for journalists to find the appropriate content using current search tools. This paper provides the details of the study we conducted about the news extraction systems used in different news channels in Kerala. Semantic web technologies can be used effectively since news archiving share many of the characteristics and problems of WWW. Since visual news archives of different media resources follow different metadata standards, interoperability between the resources is also an issue. World Wide Web Consortium has proposed a draft for an ontology framework for media resource which addresses the intercompatiblity issues. In this paper, the w3c proposed framework and its drawbacks is also discussed
Resumo:
A GIS has been designed with limited Functionalities; but with a novel approach in Aits design. The spatial data model adopted in the design of KBGIS is the unlinked vector model. Each map entity is encoded separately in vector fonn, without referencing any of its neighbouring entities. Spatial relations, in other words, are not encoded. This approach is adequate for routine analysis of geographic data represented on a planar map, and their display (Pages 105-106). Even though spatial relations are not encoded explicitly, they can be extracted through the specially designed queries. This work was undertaken as an experiment to study the feasibility of developing a GIS using a knowledge base in place of a relational database. The source of input spatial data was accurate sheet maps that were manually digitised. Each identifiable geographic primitive was represented as a distinct object, with its spatial properties and attributes defined. Composite spatial objects, made up of primitive objects, were formulated, based on production rules defining such compositions. The facts and rules were then organised into a production system, using OPS5