10 resultados para OPTICAL SENSING
em Cochin University of Science
Resumo:
The thesis presented the fabrication and characterisation of polymer optical fibers in their applications as optical amplifier and smart sensors.Optical polymers such as PMMA are found to be a very good host material due to their ability to incorporate very high concentration of optical gain media like fluorescent dyes and rare earth compounds. High power and high gain optical amplification in organic dye-doped polymer optical fibers is possible due to extremely large emission cross sections of oyes. Dye doped (Rhodamine 6G) optical fibers were fabricated by using indigenously developed polymer optical fiber drawing tower. Loss characterization of drawn dye doped fibers was carried out using side illumination technique. The advantage of the above technique is that it is a nondestructive method and can also be used for studying the uniformity in fiber diameter and doping. Sensitivity of the undoped polymer fibers to temperature and microbending were also studied in its application in smart sensors.Optical amplification studies using the dye doped polymer optical fibers were carried out and found that an amplification of l8dB could be achieved using a very short fiber of length lOcm. Studies were carried out in fibers with different dye concentrations and diameter and it was observed that gain stability was achieved at relatively high dye concentrations irrespective of the fiber diameter.Due to their large diameter, large numerical aperture, flexibility and geometrical versatility of polymer optical fibers it has a wide range of applications in the field of optical sensing. Just as in the case of conventional silica based fiber optic sensors, sensing techniques like evanescent wave, grating and other intensity modulation schemes can also be efficiently utilized in the case of POF based sensors. Since polymer optical fibers have very low Young's modulus when compared to glass fibers, it can be utilized for sensing mechanical stress and strain efficiently in comparison with its counterpart. Fiber optic sensors have proved themselves as efficient and reliable devices to sense various parameters like aging, crack formation, weathering in civil structures. A similar type of study was carried out to find the setting characteristics of cement paste used for constructing civil structures. It was found that the measurements made by using fiber optic sensors are far more superior than that carried out by conventional methods. More over,POF based sensors were found to have more sensitivity as well.
Resumo:
In this context,in search of new materials based on chalcogenide glasses,we have developed a novel technique for fabrication of chalcogenide nano composites which are presented in this theis.The techniques includes the dissolution of bulk chalcogenide glasses in amine solvent.This solution casting method allows to retain the attractive optical properties of chalcogenide glasses enabling new fabrication routes for realization of large area thick-thin films with less cost. Chalcogenide glass fiber geometry opens new possibilities for a large number of applications in optics,like remote temperature measurements ,CO2 laser power delivery, and optical sensing and single mode propagation of IR light.We have fabricated new optical polymer fibers doped with chalcogenide glasses which can be used for many optical applications.The present thesis also describes the structural,thermal and optical characterization of certain chalocogenide based materials prepared for different methods and its applications.
Resumo:
Among various optical sensing schemes, infrared spectroscopy is a powerful tool for detecting and determining the composition of complex organic samples since vibrational finger prints of all biomolecules and organic species are located in this window. This spectroscopic technique is simple, reliable, fast, non-destructive, cost-effective while having low sensitivity. Use of metallic nanoparticles in association with a good IR transparent sensing substrate, is one of the promising solutions to enhance the sensitivity. Chalcogenide glasses are promising substrate material because of their extended optical transmission window starting from the visible to the far infrared range up to 20 μm, high refractive index usually between 2 and 3 and high optical nonlinearity, which make them good candidates as IR sensors and optical ultrafast nonlinear devices. These glasses are favorable sensor materials for the infrared spectral range because of their high IR transparency to allow for low optical loss at wavelengths corresponding to the characteristic optical absorption bands of organic molecules, high refractive index for tight confinement of optical energy within the resonator structure, processibility into thin film form, chemical compatibility for adhesion of silver nano particles and thin films and resistance to the chemical environment to be sensed. Molecules adsorbed to silver island structures shows enhanced IR absorption spectra and the extent of enhancement is determined by many factors such as the size, density and morphology of silver structures, optical and dielectric properties of the substrate material etc.
Resumo:
We propose and demonstrate the possibility of using a permanently microbent bare optical fiber for detecting chemical species. Two detection schemes, viz., a bright-field detection scheme (for the core modes), and a dark-field detection scheme (for the cladding modes) have been employed to produce a fiber-optic sensor. The sensor described here is sensitive enough to detect concentrations as low as nanomoles per liter of a chemical species, with a dynamic range of more than 6 orders of magnitude.
Resumo:
We propose and demonstrate a new technique for evanescent wave chemical sensing by writing long period gratings in a bare multimode plastic clad silica fiber. The sensing length of the present sensor is only 10 mm, but is as sensitive as a conventional unclad evanescent wave sensor having about 100 mm sensing length. The minimum measurable concentration of the sensor reported here is 10 nmol/l and the operating range is more than 4 orders of magnitude. Moreover, the detection is carried out in two independent detection configurations viz., bright field detection scheme that detects the core-mode power and dark field detection scheme that detects the cladding mode power. The use of such a double detection scheme definitely enhances the reliability and accuracy of the results. Furthermore, the cladding of the present fiber need not be removed as done in conventional evanescent wave fiber sensors.
Resumo:
Ferrofluids belonging to the series, Ni x Fe1-x Fe2O4 and Zn x Fe1-x Fe2O4, were synthesized using cold co-precipitation. Liquid films of these ferrofluids were prepared by encapsulating the ferrofluids in between two optically smooth and ultrasonically cleaned glass plates. Magnetic field induced laser transmission through these ferrofluid films has been investigated. Magnetic field values can be calibrated in terms of output laser power in the low field region in which the variation is linear. This set up can be used as a cheap optical gaussmeter in the low field regime. Using the same set-up, the saturation magnetization of the sample used can also be calculated with a sample that is pre-characterized. Hence both magnetization of the sample, as well as applied magnetic field can be sensed and calculated with a precalibrated sample.
Resumo:
The objective of the preset work is to develop optical fiber sensors for various physical and chemical parameters. As a part of this we initially investigated trace analysis of silica, ammonia, iron and phosphate in water. For this purpose the author has implemented a dual wavelength probing scheme which has many advantages over conventional evanescent wave sensors. Dual wavelength probing makes the design more reliable and repeatable and this design makes the sensor employable for concentration, chemical content, adulteration level, monitoring and control in industries or any such needy environments. Use of low cost components makes the system cost effective and simple. The Dual wavelength probing scheme is employed for the trace analysis of silica, iron, phosphate, and ammonia in water. Such sensors can be employed for the steam and water quality analysers in power plants. Few samples from a power plant are collected and checked the performance of developed system for practical applications.
Resumo:
Microbent optical fibers are potential candidates for evanescent wave sensing. We investigate the behavior of a permanently microbent fiber optic sensor when it is immersed in an absorbing medium. Two distinct detection schemes, namely, bright-field and dark-field detection configuration, are employed for the measurements. The optical power propagating through the sensor is found to vary in a logarithmic fashion with the concentration of the absorbing species in the surrounding medium. We observe that the sensitivity of the setup is dependent on the bending amplitude and length of the microbend region for the bright-field detection scheme, while it is relatively independent of both for the dark-field detection configuration. This feature can be exploited in compact sensor designs where reduction of the sensing region length is possible without sacrificing sensitivity.
Resumo:
The objective of this study is to understand the reasons for the enhancement in aerosol optical depth (AOD) over the Arabian Sea observed during June, July and August. During these months, high values of AOD are found over the sea beyond 10◦ N and adjacent regions. The Arabian Sea is bounded by the lands of Asia and Africa on its three sides. So the region is influenced by transported aerosols from the surroundings as well as aerosols of local origin (marine aerosols). During the summer monsoon season in India, strong surface winds with velocities around 15 m s−1 are experienced over most parts of the Arabian Sea. These winds are capable of increasing sea spray activity, thereby enhancing the production of marine aerosols. The strong winds increase the contribution of marine aerosols over the region to about 60% of the total aerosol content. The main components of marine aerosols include sea salt and sulphate particles. The remaining part of the aerosol particles comes from the western and northern land masses around the sea, of which the main component is transported dust particles. This transport is observed at higher altitudes starting from 600 m. At low levels, the transport occurs mainly from the Indian Ocean and the Arabian Sea itself, indicating the predominance of marine aerosols at these levels. The major portion of the total aerosol loading was contributed by coarse-mode particles during the period of study. But in the winter season, the concentration of coarse-mode aerosols is found to be less. From the analysis, it is concluded that the increase in marine aerosols and dust particles transported from nearby deserts results in an increase in aerosol content over the Arabian Sea during June, July and August.
Resumo:
In situ methods used for water quality assessment have both physical and time constraints. Just a limited number of sampling points can be performed due to this, making it difficult to capture the range and variability of coastal processes and constituents. In addition, the mixing between fresh and oceanic water creates complex physical, chemical and biological environment that are difficult to understand, causing the existing measurement methodologies to have significant logistical, technical, and economic challenges and constraints. Remote sensing of ocean colour makes it possible to acquire information on the distribution of chlorophyll and other constituents over large areas of the oceans in short periods. There are many potential applications of ocean colour data. Satellite-derived products are a key data source to study the distribution pattern of organisms and nutrients (Guillaud et al. 2008) and fishery research (Pillai and Nair 2010; Solanki et al. 2001. Also, the study of spatial and temporal variability of phytoplankton blooms, red tide identification or harmful algal blooms monitoring (Sarangi et al. 2001; Sarangi et al. 2004; Sarangi et al. 2005; Bhagirathan et al., 2014), river plume or upwelling assessments (Doxaran et al. 2002; Sravanthi et al. 2013), global productivity analyses (Platt et al. 1988; Sathyendranath et al. 1995; IOCCG2006) and oil spill detection (Maianti et al. 2014). For remote sensing to be accurate in the complex coastal waters, it has to be validated with the in situ measured values. In this thesis an attempt to study, measure and validate the complex waters with the help of satellite data has been done. Monitoring of coastal ecosystem health of Arabian Sea in a synoptic way requires an intense, extensive and continuous monitoring of the water quality indicators. Phytoplankton determined from chl-a concentration, is considered as an indicator of the state of the coastal ecosystems. Currently, satellite sensors provide the most effective means for frequent, synoptic, water-quality observations over large areas and represent a potential tool to effectively assess chl-a concentration over coastal and oceanic waters; however, algorithms designed to estimate chl-a at global scales have been shown to be less accurate in Case 2 waters, due to the presence of water constituents other than phytoplankton which do not co-vary with the phytoplankton. The constituents of Arabian Sea coastal waters are region-specific because of the inherent variability of these optically-active substances affected by factors such as riverine input (e.g. suspended matter type and grain size, CDOM) and phytoplankton composition associated with seasonal changes.