1 resultado para Numeric simulations
em Cochin University of Science
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (2)
- Repository Napier (1)
- Aberdeen University (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (28)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (12)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (20)
- Archive of European Integration (1)
- Aston University Research Archive (18)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (149)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (109)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (168)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (20)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (5)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (13)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- Earth Simulator Research Results Repository (5)
- Greenwich Academic Literature Archive - UK (4)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (4)
- Institutional Repository of Leibniz University Hannover (2)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (3)
- Instituto Politécnico do Porto, Portugal (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (1)
- National Aerospace Laboratory (NLR) Reports Repository (1)
- National Center for Biotechnology Information - NCBI (12)
- Open University Netherlands (1)
- Publishing Network for Geoscientific & Environmental Data (14)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (8)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositório da Produção Científica e Intelectual da Unicamp (10)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (70)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (3)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (3)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (35)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (35)
- Université de Montréal (1)
- Université de Montréal, Canada (12)
- University of Michigan (12)
- University of Queensland eSpace - Australia (60)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
Decision trees are very powerful tools for classification in data mining tasks that involves different types of attributes. When coming to handling numeric data sets, usually they are converted first to categorical types and then classified using information gain concepts. Information gain is a very popular and useful concept which tells you, whether any benefit occurs after splitting with a given attribute as far as information content is concerned. But this process is computationally intensive for large data sets. Also popular decision tree algorithms like ID3 cannot handle numeric data sets. This paper proposes statistical variance as an alternative to information gain as well as statistical mean to split attributes in completely numerical data sets. The new algorithm has been proved to be competent with respect to its information gain counterpart C4.5 and competent with many existing decision tree algorithms against the standard UCI benchmarking datasets using the ANOVA test in statistics. The specific advantages of this proposed new algorithm are that it avoids the computational overhead of information gain computation for large data sets with many attributes, as well as it avoids the conversion to categorical data from huge numeric data sets which also is a time consuming task. So as a summary, huge numeric datasets can be directly submitted to this algorithm without any attribute mappings or information gain computations. It also blends the two closely related fields statistics and data mining