4 resultados para Number of vehicles

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A profile is a finite sequence of vertices of a graph. The set of all vertices of the graph which minimises the sum of the distances to the vertices of the profile is the median of the profile. Any subset of the vertex set such that it is the median of some profile is called a median set. The number of median sets of a graph is defined to be the median number of the graph. In this paper, we identify the median sets of various classes of graphs such as Kp − e, Kp,q forP > 2, and wheel graph and so forth. The median numbers of these graphs and hypercubes are found out, and an upper bound for the median number of even cycles is established.We also express the median number of a product graph in terms of the median number of their factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accident toll on our road traffic is staggering. Obviously this appalling toll of life and.health represents heavy economic loss in addition to human tragedy. the enormous increase in the number of motor vehicles with its rash, negligent and reckless use by unscrupulous, inexperienced and dangerous drivers in the most miserably managed roads coupled with concomitant hazards would draw our attention that Accident Prevention, and Accident compensation are thoroughly two compatiable aims. Proposed solutions to the traffic Problems abound. Preventive efforts concentrated on each of the variables the driver, the road and the vehicle are all being initiated. Still it is a Will the .Motor Vehicles are not considered as dangerous machines. Motoring activity is found useful.A competent and specially trained police force has to be created to deal with the traffic offences in a more scientific ways.The term ‘legal representative needs to be defined on the constructive aspects of relation and dependence.Services of legal aid and public counsels shall necessarily be extended to the poor Motor Accident victims.Timely reporting and timely investigation of Motor Accidents cases will reduce the number of fraudulent claims. There are instances where cases are taken in to investigation after several months of occurrence.It is hoped that the suggestions made above as a result of the present study, if pwgninto practice, may make a humble contribution to the prevention sssof motor accidents and to a faster and speedier settlement of motor accident compensation claims.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The motion instability is an important issue that occurs during the operation of towed underwater vehicles (TUV), which considerably affects the accuracy of high precision acoustic instrumentations housed inside the same. Out of the various parameters responsible for this, the disturbances from the tow-ship are the most significant one. The present study focus on the motion dynamics of an underwater towing system with ship induced disturbances as the input. The study focus on an innovative system called two-part towing. The methodology involves numerical modeling of the tow system, which consists of modeling of the tow-cables and vehicles formulation. Previous study in this direction used a segmental approach for the modeling of the cable. Even though, the model was successful in predicting the heave response of the tow-body, instabilities were observed in the numerical solution. The present study devises a simple approach called lumped mass spring model (LMSM) for the cable formulation. In this work, the traditional LMSM has been modified in two ways. First, by implementing advanced time integration procedures and secondly, use of a modified beam model which uses only translational degrees of freedoms for solving beam equation. A number of time integration procedures, such as Euler, Houbolt, Newmark and HHT-α were implemented in the traditional LMSM and the strength and weakness of each scheme were numerically estimated. In most of the previous studies, hydrodynamic forces acting on the tow-system such as drag and lift etc. are approximated as analytical expression of velocities. This approach restricts these models to use simple cylindrical shaped towed bodies and may not be applicable modern tow systems which are diversed in shape and complexity. Hence, this particular study, hydrodynamic parameters such as drag and lift of the tow-system are estimated using CFD techniques. To achieve this, a RANS based CFD code has been developed. Further, a new convection interpolation scheme for CFD simulation, called BNCUS, which is blend of cell based and node based formulation, was proposed in the study and numerically tested. To account for the fact that simulation takes considerable time in solving fluid dynamic equations, a dedicated parallel computing setup has been developed. Two types of computational parallelisms are explored in the current study, viz; the model for shared memory processors and distributed memory processors. In the present study, shared memory model was used for structural dynamic analysis of towing system, distributed memory one was devised in solving fluid dynamic equations.