2 resultados para Noisy data
em Cochin University of Science
Resumo:
Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works
Resumo:
The main objective of this thesis is to develop a compact chipless RFID tag with high data encoding capacity. The design and development of chipless RFID tag based on multiresonator and multiscatterer methods are presented first. An RFID tag using using SIR capable of 79bits is proposed. The thesis also deals with some of the properties of SIR like harmonic separation, independent control on resonant modes and the capability to change the electrical length. A chipless RFID reader working in a frequency band of 2.36GHz to 2.54GHz has been designed to show the feasibility of the RFID system. For a practical system, a new approach based on UWB Impulse Radar (UWB IR) technology is employed and the decoding methods from noisy backscattered signal are successfully demonstrated. The thesis also proposes a simple calibration procedure, which is able to decode the backscattered signal up to a distance of 80cm with 1mW output power.