3 resultados para NbO6 octahedra

em Cochin University of Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Raman and infrared spectra of Tl2NbO2PO4, Tl3NaNb4O9(PO4)2 and TlNbOP2O7 are reported. The observed bands are assigned in terms of vibrations of NbO6 octahedra and PO4 tetrahedra in the first two compounds and in terms of NbO6 octahedra and P2O7 4− anion in the third compound. The NbO6 octahedra in all the title compounds are found to be corner-shared and distorted. The higher wavenumber values of the ν1 (NbO6) mode and other stretching modes indicate that the NbO6 octahedra in them are distorted in the order TlNbOP2O7 > Tl2NbO2PO4 > Tl3NaNb4O9(PO4)2. The splitting of the ν3 (PO4) mode indicates that PO4 tetrahedra is distorted more in Tl2NbO2PO4 than in Tl3NaNb4O9(PO4)2. The symmetry of P2O7 4− anion in TlNbOP2O7 is lowered. Bands indicate that the P–O–P bridge in the above compound has a bent P–O–P bridge configuration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman and FTIR spectra of CaFeTi(PO4)3 and CdFeTi(PO4)3 are recorded and analyzed. The observed bands are assigned in terms of vibrations of TiO6 octahedra and PO4 tetrahedra. The symmetry of TiO6 octrahedra and PO4 tetrahedra is lowered from their free ion symmetry. The presence of Fe3+ ion disrupts the Ti–O–P–O–Ti chain and leads to the distortion of TiO6 octrahedra and PO4 tetrahedra. The PO4 3 tetrahedra in both crystals are linearly distorted. The covalency bonding factor of PO4 3 polyanion of both the crystals are calculated from the Raman spectra and compared to that of other Nasicon-type systems. The numerical values of covalency bonding factor indicates that there is a reduction in redox energy and cell voltage and is attributed to strong covalency of PO4 3 polyanionin

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Raman and FTIR spectra of [C(NH2)3]2M(SO4)2 ·6H2O (withM= Co, Fe, Ni) were recorded and analysed. The observed spectral bands are assigned in terms of vibrations of guanidinium ions, sulphate groups and water molecules. The analysis shows that the sulphate tetrahedra are distorted from their free state symmetry Td to C1. This is attributed to the presence of hydrogen bonds from water molecules. The order of distortion of the metal oxygen octahedra influenced the distortion of the sulphate tetrahedra. The appearance of 1– 3 modes of water molecules above 3300 cm−1 indicates the presence of weak hydrogen bonds