3 resultados para Natural killer cells

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study on natural antioxidants, the focus has been kept mainly on oil seeds, especially sesame and its by-products. Sesame, which has been under cultivation in India for centuries is called the 'Queen of oil seed crops' because of the high yield of oil obtained and the nutritional qualities of the seed, oil, and meal. Though India is the largest producer of sesame in the world, research on the various health benefits of sesame has been carried out by Japanese Sesame has an important place in the foods and tradit..ional medicine of India from time immemorial. Foreseeing the potential of sesame and its byproducts as an important antioxidant source and its availability in bulk, the present study was focussed on Sesamum species. There are not many reports on the wild species of Sesamum in India, especially of the Kerala region. Hence, in the present study we also included antioxidants of Sesamurnrnalabaricumdistributed throughout the coastal region.The important characteristics of sesame are attributed to the presence of the umquc compounds lignans. Lignans arc a group of natural products of phenyl propanoid ongm, whieh are widely distributed in nature. They display important physiological functions in plants, in human nutrition and medicine, given their extensive health promotive and curative properties. Much interest has been focussed on their effectiveness as antineoplastic agents and research in this area has revealed several modes of action by which they can regulate the growth of mammalian cells. Sesame is an important source of furofuran lignans, of which sesamin and the rare oxygenated derivative sesamoIin are the most abundant. Others include sesamol and glucosides of lignans. Sesarnin and episesamin are reported to have hypocholesterolemic effect, suppressive effect on chemically induced cancer, alleviation of allergy symptoms etc. Sesamol, sesamolin and the lignan glycosides are reported to inhibit lipid peroxidation. Present investigation on sesame and its byproducts have been carried out to explore the possibility of developing a natural antioxidant extract from available resources to be used as a substitute to synthetic ones in vegetable oils and foods. Preliminary analysis showed that sesame cake, a byproduct could still be utilized as a major source of lignans. Sesame cake, which is now used only as a cattlefeed, can be better utilized in the form of a valuable antioxidant source. The present study explains the development of a feasible process for the extraction of antioxidant compounds from sesame cake. The antioxidant extract so prepared from sesame cake has been tested for vegetable oil protection and is found to be effective at low concentration. In addition, studies also include the antioxidant, radical scavenging, anticancer, mosquitocidal and pesticidal activities of extract and individual compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a detailed account of a cost - effective approach towards enhanced production of alkaline protease at profitable levels using different fermentation designs employing cheap agro-industrial residues. It involves the optimisation of process parameters for the production of a thermostable alkaline protease by Vibrio sp. V26 under solid state, submerged and biphasic fermentations, production of the enzyme using cell immobilisation technology and the application of the crude enzyme on the deproteinisation of crustacean waste.The present investigation suggests an economic move towards Improved production of alkaline protease at gainful altitudes employing different fermentation designs utilising inexpensive agro-industrial residues. Moreover, the use of agro-industrial and other solid waste substrates for fermentation helps to provide a substitute in conserving the already dwindling global energy resources. Another alternative for accomplishing economically feasible production is by the use of immobilisation technique. This method avoids the wasteful expense of continually growing microorganisms. The high protease producing potential of the organism under study ascertains their exploitation in the utilisation and management of wastes. However, strain improvement studies for the production of high yielding variants using mutagens or by gene transfer are required before recommending them to Industries.Industries, all over the world, have made several attempts to exploit the microbial diversity of this planet. For sustainable development, it is essential to discover, develop and defend this natural prosperity. The Industrial development of any country is critically dependent on the intellectual and financial investment in this area. The need of the hour is to harness the beneficial uses of microbes for maximum utilisation of natural resources and technological yields. Owing to the multitude of applications in a variety of industrial sectors, there has always been an increasing demand for novel producers and resources of alkaline proteases as well as for innovative methods of production at a commercial altitude. This investigation forms a humble endeavour towards this perspective and bequeaths hope and inspiration for inventions to follow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Green energy and Green technology are the most of the quoted terms in the context of modern science and technology. Technology which is close to nature is the necessity of the modern world which is haunted by global warming and climatic alterations. Proper utilization of solar energy is one of the goals of Green Energy Movement. The present thesis deals with the work carried out in the eld of nanotechnology and its possible use in various applications (employing natural dyes) like solar cells. Unlike arti cial dyes, the natural dyes are available, easy to prepare, low in cost, non-toxic, environmentally friendly and fully biodegradable. Looking to the 21st century, the nano/micro sciences will be a chief contributor to scienti c and technological developments. As nanotechnology progresses and complex nanosystems are fabricated, a growing impetus is being given to the development of multi-functional and size-dependent materials. The control of the morphology, from the nano to the micrometer scales, associated with the incorporation of several functionalities can yield entirely new smart hybrid materials. They are special class of materials which provide a new method for the improvement of the environmental stability of the material with interesting optical properties and opening a land of opportunities for applications in the eld of photonics. Zinc oxide (ZnO) is one such multipurpose material that has been explored for applications in sensing, environmental monitoring, and bio-medical systems and communications technology. Understanding the growth mechanism and tailoring their morphology is essential for the use of ZnO crystals as nano/micro electromechanical systems and also as building blocks of other nanosystems.