13 resultados para Narrow-band systems

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there is a visible trend for products/services which demand seamless integration of cellular networks, WLANs and WPANs. This is a strong indication for the inclusion of high speed short range wireless technology in future applications. In this context UWB radio has a significant role to play as an extension/complement to existing cellular/access technology. In the present work, three major types of ultra wide band planar antennas are investigated: Monopole and Slot. Three novel compact UWB antennas, suitable for poratble applications, are designed and characterized, namely 1) Ground modified monopole 2) Serrated monopole 3) Triangular slot The performance of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances in each structure. In addition to having compact sized, high efficiency and broad bandwidth antennas, one of the major criterion in the design of impulse-UWB systems have been the transmission of narrow band pulses with minimum distortion. The key challenge is not only to design a broad band antenna with constant and stable gain but to maintain a flat group delay or linear phase response in the frequency domain or excellent transient response in time domain. One of the major contributions of the thesis lies in the analysis of the frequency and timedomain response of the designed UWB antennas to confirm their suitability for portable pulsed-UWB systems. Techniques to avoid narrowband interference by engraving narrow slot resonators on the antenna is also proposed and their effect on a nano-second pulse have been investigated

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, there is a visible trend for products/services which demand seamless integration of cellular networks, WLANs and WPANs. This is a strong indication for the inclusion of high speed short range wireless technology in future applications. In this context UWB radio has a significant role to play as an extension/complement to existing cellular/access technology. In the present work, we have investigated two major types of wide band planar antennas: Monopole and Slot. Four novel compact broadband antennas, suitable for poratble applications, are designed and characterized, namely 1. Elliptical monopole 2. Inverted cone monopole 3. Koch fractal slot 4. Wide band slot The performance of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances in each structure. In addition to having compact sized, high efficiency and broad bandwidth antennas, one of the major criterion in the design of impulse-UWB systems have been the transmission of narrow band pulses with minimum distortion. The key challenge is not only to design a broad band antenna with constant and stable gain but to maintain a flat group delay or linear phase response in the frequency domain or excellent transient response in time domain. One of the major contributions of the thesis lies in the analysis of the frequency and time-domain response of the designed UWB antennas to confirm their suitability for portable pulsed-UWB systems. Techniques to avoid narrowband interference by engraving narrow slot resonators on the antenna is also proposed and their effect on a nano-second pulse have been investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A major challenge in the transmission of narrow pulses is the radiation characteristics of the antenna. Designing the front ends for UWB systems pose challenges compared to their narrow and wide band counterparts because in addition to having electrically small size, high efficiency and band width, the antenna has to have excellent transient response. The present work deals with the design of four novel antenna designs- Square Monopole, Semi-Elliptic Slot, Step and Linear Tapered slot - and an assay on their suitability in UWB Systems. Multiple resonances in the geometry are matched to UWB by redesigning the ground-patch interfaces. Techniques to avoid narrow band interference is proposed in the antenna level and their effect on a nano second pulse have also been investigated. The thesis proposes design guidelines to design the antenna on laminates of any permittivity and the analyzes are complete with results in the frequency and time domains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a sigma-delta analog to digital (A/D) As most of the sigma-delta ADC applications require converter, the most computationally intensive block is decimation filters with linear phase characteristics, the decimation filter and its hardware implementation symmetric Finite Impulse Response (FIR) filters are may require millions of transistors. Since these widely used for implementation. But the number of FIR converters are now targeted for a portable application, filter coefficients will be quite large for implementing a a hardware efficient design is an implicit requirement. narrow band decimation filter. Implementing decimation In this effect, this paper presents a computationally filter in several stages reduces the total number of filter efficient polyphase implementation of non-recursive coefficients, and hence reduces the hardware complexity cascaded integrator comb (CIC) decimators for and power consumption [2]. Sigma-Delta Converters (SDCs). The SDCs are The first stage of decimation filter can be operating at high oversampling frequencies and hence implemented very efficiently using a cascade of integrators require large sampling rate conversions. The filtering and comb filters which do not require multiplication or and rate reduction are performed in several stages to coefficient storage. The remaining filtering is performed reduce hardware complexity and power dissipation. either in single stage or in two stages with more complex The CIC filters are widely adopted as the first stage of FIR or infinite impulse response (IIR) filters according to decimation due to its multiplier free structure. In this the requirements. The amount of passband aliasing or research, the performance of polyphase structure is imaging error can be brought within prescribed bounds by compared with the CICs using recursive and increasing the number of stages in the CIC filter. The non-recursive algorithms in terms of power, speed and width of the passband and the frequency characteristics area. This polyphase implementation offers high speed outside the passband are severely limited. So, CIC filters operation and low power consumption. The polyphase are used to make the transition between high and low implementation of 4th order CIC filter with a sampling rates. Conventional filters operating at low decimation factor of '64' and input word length of sampling rate are used to attain the required transition '4-bits' offers about 70% and 37% of power saving bandwidth and stopband attenuation. compared to the corresponding recursive and Several papers are available in literature that deals non-recursive implementations respectively. The same with different implementations of decimation filter polyphase CIC filter can operate about 7 times faster architecture for sigma-delta ADCs. Hogenauer has than the recursive and about 3.7 times faster than the described the design procedures for decimation and non-recursive CIC filters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel technique for obtaining dual-hand circular polarization (CP) radiation of a single-feed circular microstrip antenna in proposed and demonstrated. By embedding two pain of arc shaped slots of proper lengths close to the boundary of a circular patch, and protruding one of the arc-shaped slots with a narrow slit, the circular microstrip antenna can perform dual-hand CP radiation using a single probe feed. Details of the antenna design

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design of a compact microstrip-fed ultra-wideband antenna suitable for USB dongle and other such space constraint applications is presented. The structure consists of a pentagonal monopole element and a modified ground plane that gives an impedance bandwidth from 2.8 to 12 GHz. Radiation patterns are stable and omni-directional throughout the band with an average gain of 2.84 dBi. The antenna occupies only 11 × 30 mm2 on FR4 substrate with permittivity 4.4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact ultra-wideband (UWB) printed slot antenna is described, suitable for integration with the printed circuit board (PCB) of a wireless, universal, serial-bus dongle. The design comprises of a near-rectangular slot fed by a coplanar waveguide (CPW) printed on a PCB of size 20 × 30 mm2. It has a large bandwidth covering the 3.1–10.6 GHz UWB band, with omnidirectional radiation patterns. Further, a notched band centered at 5.45 GHz wireless local area network bands is obtained within the wide bandwidth by inserting a narrow slot inside the tuning stub. Details of the antenna design are described, and the experimental results of the constructed prototype are presented. The time domain studies on the antenna shows a linear phase response throughout the band except at the notched frequency. The transient analysis of the antenna indicates very little pulse distortion confirming its suitability for high speed wireless connectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of a split-ring resonator (SRR)-loaded waveguide for the design of a band-rejection filter with adjustable bandwidth is reported. The width of the stopband can be adjusted by suitably positioning the SRR array in the waveguide. The rejection band can be made very narrow by placing the array at the electric-field minimum. The stopband attenuation depends on the number of unit cells in the array.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure. Microstrip antennas are suitable for wireless applications due to their low cost, high gain and ease of fabrication. But the major disadvantage of micro strip antennas is their inherent narrow bandwidth. A lot of techniques are introduced by the researchers all over the world to enhance the bandwidth of micro strip patch antennas. The thesis addresses an attempt to enhance the bandwidth of micro strip patch antennas by incorporating impedance matching strip as a part of the micro strip patch antenna. The first part of the thesis deals with the broadband operation of the tilted square slot and polygonal slot loaded square micro strip patch antennas. The resonant mechanisms are clearly mentioned using the simulation and experimental studies. The bandwidth of the polygonal slotted broadband patch antenna is again enhanced by implementing an Lstrip feed mechanism. In the second major part of the thesis, a novel gain enhancement technique for single band and broadband square micro strip patch antennas is achieved by implementing offset stacked configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A printed compact coplanar waveguide fed triangular slot antenna for ultra wide band (UWB) communication systems is presented. The antenna comprises of a triangular slot loaded ground plane with a T shaped strip radiator to enhance the bandwidth and radiation. This compact antenna has a dimension of 26mm×26mm when printed on a substrate of dielectric constant 4.4 and thickness 1.6mm. Design equations are implemented and validated for different substrates. The pulse distortion is insignificant and is verified by the measured antenna performance with high signal fidelity and virtually steady group delay. The simulation and experiment reveal that the proposed antenna exhibits good impedance match, stable radiation patterns and constant gain and group delay over the entire operating band

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of self-assembly as a strategy for the synthesis has been confined largely to molecules, because of the importance of manipulating the structure of matter at the molecular scale. We have investigated the influence of temperature and pH, in addition to the concentration of the capping agent used for the formation of the nano-bio conjugates. For example, the formation of the narrower size distribution of the nanoparticles was observed with the increase in the concentration of the protein, which supports the fact that γ-globulin acts both as a controller of nucleation as well as stabiliser. As analyzed through various photophysical, biophysical and microscopic techniques such as TEM, AFM, C-AFM, SEM, DLS, OPM, CD and FTIR, we observed that the initial photoactivation of γ-globulin at pH 12 for 3 h resulted in small protein fibres of ca. Further irradiation for 24 h, led to the formation of selfassembled long fibres of the protein of ca. 5-6 nm and observation of surface plasmon resonance band at around 520 nm with the concomitant quenching of luminescence intensity at 680 nm. The observation of light triggered self-assembly of the protein and its effect on controlling the fate of the anchored nanoparticles can be compared with the naturally occurring process such as photomorphogenesis.Furthermore,our approach offers a way to understand the role played by the self-assembly of the protein in ordering and knock out of the metal nanoparticles and also in the design of nano-biohybrid materials for medicinal and optoelectronic applications. Investigation of the potential applications of NIR absorbing and water soluble squaraine dyes 1-3 for protein labeling and anti-amyloid agents forms the subject matter of the third chapter of the thesis. The study of their interactions with various proteins revealed that 1-3 showed unique interactions towards serum albumins as well as lysozyme. 69%, 71% and 49% in the absorption spectra as well as significant quenching in the fluorescence intensity of the dyes 1-3, respectively. Half-reciprocal analysis of the absorption data and isothermal titration calorimetric (ITC) analysis of the titration experiments gave a 1:1 stoichiometry for the complexes formed between the lysozyme and squaraine dyes with association constants (Kass) in the range 104-105 M-1. We have determined the changes in the free energy (ΔG) for the complex formation and the values are found to be -30.78, -32.31 and -28.58 kJmol-1, respectively for the dyes 1, 2 and 3. Furthermore, we have observed a strong induced CD (ICD) signal corresponding to the squaraine chromophore in the case of the halogenated squaraine dyes 2 and 3 at 636 and 637 nm confirming the complex formation in these cases. To understand the nature of interaction of the squaraine dyes 1-3 with lysozyme, we have investigated the interaction of dyes 1-3 with different amino acids. These results indicated that the dyes 1-3 showed significant interactions with cysteine and glutamic acid which are present in the side chains of lysozyme. In addition the temperature dependent studies have revealed that the interaction of the dye and the lysozyme are irreversible. Furthermore, we have investigated the interactions of these NIR dyes 1-3 with β- amyloid fibres derived from lysozyme to evaluate their potential as inhibitors of this biologically important protein aggregation. These β-amyloid fibrils were insoluble protein aggregates that have been associated with a range of neurodegenerative diseases, including Huntington, Alzheimer’s, Parkinson’s, and Creutzfeldt-Jakob diseases. We have synthesized amyloid fibres from lysozyme through its incubation in acidic solution below pH 4 and by allowing to form amyloid fibres at elevated temperature. To quantify the binding affinities of the squaraine dyes 1-3 with β-amyloids, we have carried out the isothermal titration calorimetric (ITC) measurements. The association constants were determined and are found to be 1.2 × 105, 3.6× 105 and 3.2 × 105 M-1 for the dyes, 1-3, respectively. To gain more insights into the amyloid inhibiting nature of the squaraine dyes under investigations, we have carried out thioflavin assay, CD, isothermal titration calorimetry and microscopic analysis. The addition of the dyes 1-3 (5μM) led to the complete quenching in the apparent thioflavin fluorescence, thereby indicating the destabilization of β-amyloid fibres in the presence of the squaraine dyes. Further, the inhibition of the amyloid fibres by the squaraine dyes 1-3, has been evidenced though the DLS, TEM AFM and SAED, wherein we observed the complete destabilization of the amyloid fibre and transformation of the fibre into spherical particles of ca. These results demonstrate the fact that the squaraine dyes 1-3 can act as protein labeling agents as well as the inhibitors of the protein amyloidogenesis. The last chapter of the thesis describes the synthesis and investigation of selfassembly as well as bio-imaging aspects of a few novel tetraphenylethene conjugates 4-6.Expectedly, these conjugates showed significant solvatochromism and exhibited a hypsochromic shift (negative solvatochromism) as the solvent polarity increased, and these observations were justified though theoretical studies employing the B3LYP/6-31g method. We have investigated the self-assembly properties of these D-A conjugates though variation in the percentage of water in acetonitrile solution due to the formation of nanoaggregates. Further the contour map of the observed fluorescence intensity as a function of the fluorescence excitation and emission wavelength confirmed the formation of J-type aggregates in these cases. To have a better understanding of the type of self-assemblies formed from the TPE conjugates 4-6, we have carried out the morphological analysis through various microscopic techniques such as DLS, SEM and TEM. 70%, we observed rod shape architectures having ~ 780 nm in diameter and ~ 12 μM in length as evidenced through TEM and SEM analysis. We have made similar observations with the dodecyl conjugate 5 at ca. 70% and 50% water/acetonitrile mixtures, the aggregates formed from 4 and 5 were found to be highly crystalline and such structures were transformed to amorphous nature as the water fraction was increased to 99%. To evaluate the potential of the conjugate as bio-imaging agents, we have carried out their in vitro cytotoxicity and cellular uptake studies though MTT assay, flow cytometric and confocal laser scanning microscopic techniques. Thus nanoparticle of these conjugates which exhibited efficient emission, large stoke shift, good stability, biocompatibility and excellent cellular imaging properties can have potential applications for tracking cells as well as in cell-based therapies. In summary we have synthesized novel functional organic chromophores and have studied systematic investigation of self-assembly of these synthetic and biological building blocks under a variety of conditions. The investigation of interaction of water soluble NIR squaraine dyes with lysozyme indicates that these dyes can act as the protein labeling agents and the efficiency of inhibition of β-amyloid indicate, thereby their potential as anti-amyloid agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoelectric materials are revisited for various applications including power generation. The direct conversion of temperature differences into electric voltage and vice versa is known as thermoelectric effect. Possible applications of thermoelectric materials are in eco-friendly refrigeration, electric power generation from waste heat, infrared sensors, temperature controlled-seats and portable picnic coolers. Thermoelectric materials are also extensively researched upon as an alternative to compression based refrigeration. This utilizes the principle of Peltier cooling. The performance characteristic of a thermoelectric material, termed as figure of merit (ZT) is a function of several transport coefficients such as electrical conductivity (σ), thermal conductivity (κ) and Seebeck coefficient of the material (S). ZT is expressed asκσTZTS2=, where T is the temperature in degree absolute. A large value of Seebeck coefficient, high electrical conductivity and low thermal conductivity are necessary to realize a high performance thermoelectric material. The best known thermoelectric materials are phonon-glass electron – crystal (PGEC) system where the phonons are scattered within the unit cell by the rattling structure and electrons are scattered less as in crystals to obtain a high electrical conductivity. A survey of literature reveals that correlated semiconductors and Kondo insulators containing rare earth or transition metal ions are found to be potential thermoelectric materials. The structural magnetic and charge transport properties in manganese oxides having the general formula of RE1−xAExMnO3 (RE = rare earth, AE= Ca, Sr, Ba) are solely determined by the mixed valence (3+/4+) state of Mn ions. In strongly correlated electron systems, magnetism and charge transport properties are strongly correlated. Within the area of strongly correlated electron systems the study of manganese oxides, widely known as manganites exhibit unique magneto electric transport properties, is an active area of research.Strongly correlated systems like perovskite manganites, characterized by their narrow localized band and hoping conduction, were found to be good candidates for thermoelectric applications. Manganites represent a highly correlated electron system and exhibit a variety of phenomena such as charge, orbital and magnetic ordering, colossal magneto resistance and Jahn-Teller effect. The strong inter-dependence between the magnetic order parameters and the transport coefficients in manganites has generated much research interest in the thermoelectric properties of manganites. Here, large thermal motion or rattling of rare earth atoms with localized magnetic moments is believed to be responsible for low thermal conductivity of these compounds. The 4f levels in these compounds, lying near the Fermi energy, create large density of states at the Fermi level and hence they are likely to exhibit a fairly large value of Seebeck coefficient.