6 resultados para Nanocomposites. Nanographite. Epoxy. Expanded graphite. Microwave

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, an attempt has been made to prepare composites by incorporating expanded graphite fillers in insulating elastomer matrices and to study its DC electrical conductivity, dielectric properties and electromagnetic shielding characteristics, in addition to evaluating the mechanical properties. Recently, electronic devices and components have been rapidly developing and advancing. Thus, with increased usage of electronic devices, electromagnetic waves generated by electronic systems can potentially create serious problems such as malfunctions of medical apparatus and industry robots and can even cause harm to the human body. Therefore, in this work the applicable utility of the prepared composites as electromagnetic interference (EMI) shielding material are also investigated. The dissertation includes nine chapters

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Graphene has captured the attention of scientific community due to recently emerging high performance applications. Hence, studying its reinforcing effects on epoxy resin is a significant step. In this study, microwave exfoliated reduced graphene oxide (MERGO) was prepared from natural graphite for subsequent fabrication of epoxy nanocomposites using triethylenetetramine (TETA) as a curing agent via insitu polymerization. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), C13 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and ultravioletevisible (UVevis) spectroscopy were employed to confirm the simultaneous reduction and exfoliation of graphene oxide. The reinforcing effect of MERGO on epoxy resin was explored by investigating its static mechanical properties and dynamic mechanical analysis (DMA) at MERGO loadings of 0 to 0.5 phr. The micro-structure of epoxy/MERGO nanocomposites was investigated using scanning electron microscope (SEM), transmission electron microscope (TEM) and XRD techniques. The present work reports an enhancement of 32%, 103% and 85% in tensile, impact and flexural strength respectively of epoxy by the addition of even 0.25 phr MERGO. At this loading elastic and flexural moduli also increased by 10% and 65%, respectively. Single-edge-notch three-point-Bending (SEN-TPB) fracture toughness (KIC) measurements were carried out where a 63% increase was observed by the introduction of 0.25 phr MERGO. The interfacial interactions brought about by graphene also benefited the dynamic mechanical properties to a large extent in the form of a significant enhancement in storage modulus and slightly improved glass transition temperature. Considerable improvements were also detected in dielectric properties. The epoxy nanocomposite also attained an ac conductivity of 10 5 S/m and a remarkable increase in dielectric constant. The simple and cost effective way of graphene synthesis for the fabrication of epoxy/MERGO nanocomposites may be extended to the preparation of other MERGO based polymer nanocomposites. This remarkable class of materials has thrown open enormous opportunities for developing conductive adhesives and in microelectronics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of a new type of microwave absorbing material using rubber latex and carbon. for application in the interior lining of anechoic chambers, has been reported. Absorption coefficients of different combinations were estimated at X and S bands and the results were presented graphically. A combination of 50% rubber latex, 40% carbon and 10% graphite is found to form an ideal microwave absorbing material in the X and s bands

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study the preparation and characterisation of rubber ferrite composites containing nickel ferrite and gamma ferric oxide have been dealt with.Synthetic rubbers viz. ethylene propylene diene rubber and neoprene rubber were used for the incorporation of nickel ferrite and gamma ferric oxide for the synthesis of RFCs. Incorporation of ferrites were carried out according to a specific recipe for various loadings of the magnetic fillers. The ferrites used for the preparation of RFCs were synthesised using sol-gel method and structural characterisation was carried out. Experimental techniques like X-ray diffraction, Transmission electron microscopy and other analytical techniques were used for this. Precharaterised ferrites were then incorporated at different loading into rubber according to conventional mixing methods. The cure characteristics, mechanical, dielectric, magnetic and microwave properties of these composites were evaluated. The effect of carbon black on these properties of RFCs were carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A phantom that exhibits complex dielectric properties similar to low-water-content biological tissues over the electromagnetic spectrum of 2000â3000 MHz has been synthesized from carbon black, graphite powder, and poly vinyl acetate (PVA)-based adhesive. The material overcomes various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the material for various concentrations of carbon and graphite are studied. A combination of 50% poly-vinyl-acetate-based adhesive, 20% carbon, and 30% graphite exhibits a high absorption coefficient, which suggests another application of the material as a good microwave absorber for the interior lining of tomographic chamber in microwave imaging. The cavity-perturbation technique is adopted to study the dielectric properties of the material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phantoms that exhibit complex dielectric properties similar to low water content biological tissues over the electromagnetic spectrum of 2â3 GHz have been synthesized from carbon black powder, graphite powder and polyvinyl-acetate-based adhesive. The materials overcome various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the materials for various compositions of carbon black and graphite powder are studied. A combination of 50% polyvinylacetate- based adhesive, 20% carbon black powder and 30% graphite powder exhibits high absorption coefficient, which suggests another application of the material as good microwave absorber for interior lining of tomographic chamber in microwave imaging. Cavity perturbation technique is adopted to study the dielectric properties of the material.