3 resultados para Naegeli dextrin
em Cochin University of Science
Resumo:
Low-density polyethylene was mixed with dextrin having different particle sizes (100, 200 and 300 mesh). Various compositions were prepared and their mechanical properties were evaluated and thermal studies have been carried out. Biodegradability of these samples has been checked using liquid culture medium containing Vibrios (an amylase producing bacteria), which were isolated from marine benthic environment. Soil burial test was done and reprocessability of these samples was evaluated. The results indicate that the newly prepared blends are reprocessable without sacrificing much of their mechanical properties. The biodegradability tests on these blends indicate that these are partially biodegradable
Resumo:
Various compositions of linear low density polyethylene(LLDPE) containing bio-filler(either starch or dextrin)of various particle sizes were prepared.The mechanical,thermal,FTIR,morphological(SEM),water absorption and melt flow(MFI) studies were carried out.Biodegradability of the compositions were determined using a shake culture flask containing amylase producing bacteria(vibrios),which were isolated from marine benthic environment and by soil burial test. The effect of low quantities of metal oxides and metal stearate as pro-oxidants in LLDPE and in the LLDPE-biofiller compositions was established by exposing the samples to ultraviolet light.The combination of bio-filler and a pro-oxidant improves the degradation of linear low density polyethylene.The maleation of LLDPE improves the compatibility of the c blend components and thepro-oxidants enhance the photodegradability of the compatibilised blends.The responsibility studies on the partially biodegradable LLDPE containing bio-fillers and pro-oxidants suggest that the blends could be repeatedly reprocessed without deterioration in mechanical properties.
Resumo:
Biodegradation is the chemical degradation of materials brought about by the action of naturally occurring microorganisms. Biodegradation is a relatively rapid process under suitable conditions of moisture, temperature and oxygen availability. The logic behind blending biopolymers such as starch with inert polymers like polyethylene is that if the biopolymer component is present in sufficient amount, and if it is removed by microorganisms in the waste disposal environment, then the base inert plastic should slowly degrade and disappear. The present work focuses on the preparation of biodegradable and photodegradable blends based on low density polyethylene incorporating small quantities of ionomers as compatibilizers. The thesis consists of eight chapters. The first chapter presents an introduction to the present research work and literature survey. The details of the materials used and the experimental procedures undertaken for the study are described in the second chapter. Preparation and characterization of low density polyethylene (LDPE)-biopolymer (starch/dextrin) blends are described in the third chapter. The result of investigations on the effect of polyethylene-co-methacrylic acid ionomers on the compatibility of LDPE and starch are reported in chapter 4. Chapter 5 has been divided into two parts. The first part deals with the effect of metal oxides on the photodegradation of LDPE. The second part describes the function of metal stearates on the photodegradation of LDPE. The results of the investigations on the role of various metal oxides as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends are reported in chapter 6. Chapter 7 deals with the results of investigations on the role of various metal stearates as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends. The conclusion of the investigations is presented in the last chapter of the thesis.