3 resultados para N-methyl-d-aspartate

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photobleaching of the lasing dye Rhodamine 6G embedded in the solid matrix poly(methyl methacrylate) was investigated using a photoacoustic technique. Chopped laser radiation from an argon ion laser at four different wavelengths was used for the study. Experimental results indicate that the photobleaching rate is directly proportional to the incident laser power while it decreases with increase in concentration of the dye molecules. In the present case we have not observed any dependence of photobleaching on the chopping frequency. One-photon absorption is found to be responsible for the photobleaching of the dye within the selected range of laser power

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photobleaching of the lasing dye Rhodamine 6G embedded in the solid matrix poly(methyl methacrylate) was investigated using a photoacoustic technique. Chopped laser radiation from an argon ion laser at four different wavelengths was used for the study. Experimental results indicate that the photobleaching rate is directly proportional to the incident laser power while it decreases with increase in concentration of the dye molecules. In the present case we have not observed any dependence of photobleaching on the chopping frequency. One-photon absorption is found to be responsible for the photobleaching of the dye within the selected range of laser power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic nonlinear optical single crystals of Methyl para-Hydroxy Benzoate (MHB) have been grown using gel-solution technique. These crystals are cut along z-axis and are bombarded with Ag14+ ions of energy 100 MeV. The results show an increase in refractive index at the ion irradiated region. The dielectric constant of the irradiated crystal is increased more than 15 times compared to that of a nonirradiated crystal. The result of these changes and comparative study of second harmonic generation (SHG) efficiency before and after irradiation is discussed.