5 resultados para Multi-model inference

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis Entitled Bayesian inference in Exponential and pareto populations in the presence of outliers. The main theme of the present thesis is focussed on various estimation problems using the Bayesian appraoch, falling under the general category of accommodation procedures for analysing Pareto data containing outlier. In Chapter II. the problem of estimation of parameters in the classical Pareto distribution specified by the density function. In Chapter IV. we discuss the estimation of (1.19) when the sample contain a known number of outliers under three different data generating mechanisms, viz. the exchangeable model. Chapter V the prediction of a future observation based on a random sample that contains one contaminant. Chapter VI is devoted to the study of estimation problems concerning the exponential parameters under a k-outlier model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diagnosis of Hridroga (cardiac disorders) in Ayurveda requires the combination of many different types of data, including personal details, patient symptoms, patient histories, general examination results, Ashtavidha pareeksha results etc. Computer-assisted decision support systems must be able to combine these data types into a seamless system. Intelligent agents, an approach that has been used chiefly in business applications, is used in medical diagnosis in this case. This paper is about a multi-agent system named “Distributed Ayurvedic Diagnosis and Therapy System for Hridroga using Agents” (DADTSHUA). It describes the architecture of the DADTSHUA model .This system is using mobile agents and ontology for passing data through the network. Due to this, transport delay can be minimized. It is a system which will be very helpful for the beginning physicians to eliminate his ambiguity in diagnosis and therapy. The system is implemented using Java Agent DEvelopment framework (JADE), which is a java-complaint mobile agent platform from TILab.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agent based simulation is a widely developing area in artificial intelligence.The simulation studies are extensively used in different areas of disaster management. This work deals with the study of an agent based evacuation simulation which is being done to handle the various evacuation behaviors.Various emergent behaviors of agents are addressed here. Dynamic grouping behaviors of agents are studied. Collision detection and obstacle avoidances are also incorporated in this approach.Evacuation is studied with single exits and multiple exits and efficiency is measured in terms of evacuation rate, collision rate etc.Net logo is the tool used which helps in the efficient modeling of scenarios in evacuation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automobile Industry in India is influenced by the presence of national and multi-national manufacturers. The presence of many manufacturers and brands in the state provides many choices to the customer. The current market for car manufacturers has been transformed from a monopoly of one or two manufacturers in the seventies to oligopoly of many manufacturers in the current marketing scenario. The main objective of the research paper is to explore and conceptualize various parameters and develop a model, which influence the purchase patterns of passenger cars in the State of Kerala. Thus, the main purpose of this paper is to come up with a model, which shall facilitate further study on the consumer purchase behaviour patterns of passenger car owners in the State of Kerala, India. The author intends to undertake further quantitative analysis to verify and validate the model so developed. The main methods used for this paper are secondary research on available material, depth interview of car dealers, car financing agencies and car owners in the city of Cochin, in Kerala State in India. The depth interviews were conducted with the use of prepared questionnaire for car dealers, car customers and car financing agencies. The findings resulted in the identification of the parameters that influence the consumer purchase behaviour of passenger cars and the formulation of the model, which will be the basis for the further research of the author. The paper will be of tremendous value to the existing and new car manufacturers both indigenous and foreign, to formalize and strategies their policies towards an effective marketing strategy, so as to market their models in the State, which is known for its high literacy, consumerism and higher educational penetration

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of using information available from one variable X to make inferenceabout another Y is classical in many physical and social sciences. In statistics this isoften done via regression analysis where mean response is used to model the data. Onestipulates the model Y = µ(X) +ɛ. Here µ(X) is the mean response at the predictor variable value X = x, and ɛ = Y - µ(X) is the error. In classical regression analysis, both (X; Y ) are observable and one then proceeds to make inference about the mean response function µ(X). In practice there are numerous examples where X is not available, but a variable Z is observed which provides an estimate of X. As an example, consider the herbicidestudy of Rudemo, et al. [3] in which a nominal measured amount Z of herbicide was applied to a plant but the actual amount absorbed by the plant X is unobservable. As another example, from Wang [5], an epidemiologist studies the severity of a lung disease, Y , among the residents in a city in relation to the amount of certain air pollutants. The amount of the air pollutants Z can be measured at certain observation stations in the city, but the actual exposure of the residents to the pollutants, X, is unobservable and may vary randomly from the Z-values. In both cases X = Z+error: This is the so called Berkson measurement error model.In more classical measurement error model one observes an unbiased estimator W of X and stipulates the relation W = X + error: An example of this model occurs when assessing effect of nutrition X on a disease. Measuring nutrition intake precisely within 24 hours is almost impossible. There are many similar examples in agricultural or medical studies, see e.g., Carroll, Ruppert and Stefanski [1] and Fuller [2], , among others. In this talk we shall address the question of fitting a parametric model to the re-gression function µ(X) in the Berkson measurement error model: Y = µ(X) + ɛ; X = Z + η; where η and ɛ are random errors with E(ɛ) = 0, X and η are d-dimensional, and Z is the observable d-dimensional r.v.