4 resultados para Motion dynamics
em Cochin University of Science
Resumo:
The motion instability is an important issue that occurs during the operation of towed underwater vehicles (TUV), which considerably affects the accuracy of high precision acoustic instrumentations housed inside the same. Out of the various parameters responsible for this, the disturbances from the tow-ship are the most significant one. The present study focus on the motion dynamics of an underwater towing system with ship induced disturbances as the input. The study focus on an innovative system called two-part towing. The methodology involves numerical modeling of the tow system, which consists of modeling of the tow-cables and vehicles formulation. Previous study in this direction used a segmental approach for the modeling of the cable. Even though, the model was successful in predicting the heave response of the tow-body, instabilities were observed in the numerical solution. The present study devises a simple approach called lumped mass spring model (LMSM) for the cable formulation. In this work, the traditional LMSM has been modified in two ways. First, by implementing advanced time integration procedures and secondly, use of a modified beam model which uses only translational degrees of freedoms for solving beam equation. A number of time integration procedures, such as Euler, Houbolt, Newmark and HHT-α were implemented in the traditional LMSM and the strength and weakness of each scheme were numerically estimated. In most of the previous studies, hydrodynamic forces acting on the tow-system such as drag and lift etc. are approximated as analytical expression of velocities. This approach restricts these models to use simple cylindrical shaped towed bodies and may not be applicable modern tow systems which are diversed in shape and complexity. Hence, this particular study, hydrodynamic parameters such as drag and lift of the tow-system are estimated using CFD techniques. To achieve this, a RANS based CFD code has been developed. Further, a new convection interpolation scheme for CFD simulation, called BNCUS, which is blend of cell based and node based formulation, was proposed in the study and numerically tested. To account for the fact that simulation takes considerable time in solving fluid dynamic equations, a dedicated parallel computing setup has been developed. Two types of computational parallelisms are explored in the current study, viz; the model for shared memory processors and distributed memory processors. In the present study, shared memory model was used for structural dynamic analysis of towing system, distributed memory one was devised in solving fluid dynamic equations.
Resumo:
We present a novel approach to computing the orientation moments and rheological properties of a dilute suspension of spheroids in a simple shear flow at arbitrary Peclct number based on a generalised Langevin equation method. This method differs from the diffusion equation method which is commonly used to model similar systems in that the actual equations of motion for the orientations of the individual particles are used in the computations, instead of a solution of the diffusion equation of the system. It also differs from the method of 'Brownian dynamics simulations' in that the equations used for the simulations are deterministic differential equations even in the presence of noise, and not stochastic differential equations as in Brownian dynamics simulations. One advantage of the present approach over the Fokker-Planck equation formalism is that it employs a common strategy that can be applied across a wide range of shear and diffusion parameters. Also, since deterministic differential equations are easier to simulate than stochastic differential equations, the Langevin equation method presented in this work is more efficient and less computationally intensive than Brownian dynamics simulations.We derive the Langevin equations governing the orientations of the particles in the suspension and evolve a procedure for obtaining the equation of motion for any orientation moment. A computational technique is described for simulating the orientation moments dynamically from a set of time-averaged Langevin equations, which can be used to obtain the moments when the governing equations are harder to solve analytically. The results obtained using this method are in good agreement with those available in the literature.The above computational method is also used to investigate the effect of rotational Brownian motion on the rheology of the suspension under the action of an external force field. The force field is assumed to be either constant or periodic. In the case of con- I stant external fields earlier results in the literature are reproduced, while for the case of periodic forcing certain parametric regimes corresponding to weak Brownian diffusion are identified where the rheological parameters evolve chaotically and settle onto a low dimensional attractor. The response of the system to variations in the magnitude and orientation of the force field and strength of diffusion is also analyzed through numerical experiments. It is also demonstrated that the aperiodic behaviour exhibited by the system could not have been picked up by the diffusion equation approach as presently used in the literature.The main contributions of this work include the preparation of the basic framework for applying the Langevin method to standard flow problems, quantification of rotary Brownian effects by using the new method, the paired-moment scheme for computing the moments and its use in solving an otherwise intractable problem especially in the limit of small Brownian motion where the problem becomes singular, and a demonstration of how systems governed by a Fokker-Planck equation can be explored for possible chaotic behaviour.
Resumo:
The current study is aimed at the development of a theoretical simulation tool based on Discrete Element Method (DEM) to 'interpret granular dynamics of solid bed in the cross section of the horizontal rotating cylinder at the microscopic level and subsequently apply this model to establish the transition behaviour, mixing and segregation.The simulation of the granular motion developed in this work is based on solving Newton's equation of motion for each particle in the granular bed subjected to the collisional forces, external forces and boundary forces. At every instant of time, the forces are tracked and the positions velocities and accelarations of each partcle is The software code for this simulation is written in VISUAL FORTRAN 90 After checking the validity of the code with special tests, it is used to investigate the transition behaviour of granular solids motion in the cross section of a rotating cylinder for various rotational speeds and fill fraction.This work is hence directed towards a theoretical investigation based on Discrete Element Method (DEM) of the motion of granular solids in the radial direction of the horizontal cylinder to elucidate the relationship between the operating parameters of the rotating cylinder geometry and physical properties ofthe granular solid.The operating parameters of the rotating cylinder include the various rotational velocities of the cylinder and volumetric fill. The physical properties of the granular solids include particle sizes, densities, stiffness coefficients, and coefficient of friction Further the work highlights the fundamental basis for the important phenomena of the system namely; (i) the different modes of solids motion observed in a transverse crosssection of the rotating cylinder for various rotational speeds, (ii) the radial mixing of the granular solid in terms of active layer depth (iii) rate coefficient of mixing as well as the transition behaviour in terms of the bed turnover time and rotational speed and (iv) the segregation mechanisms resulting from differences in the size and density of particles.The transition behaviour involving its six different modes of motion of the granular solid bed is quantified in terms of Froude number and the results obtained are validated with experimental and theoretical results reported in the literature The transition from slumping to rolling mode is quantified using the bed turnover time and a linear relationship is established between the bed turn over time and the inverse of the rotational speed of the cylinder as predicted by Davidson et al. [2000]. The effect of the rotational speed, fill fraction and coefficient of friction on the dynamic angle of repose are presented and discussed. The variation of active layer depth with respect to fill fraction and rotational speed have been investigated. The results obtained through simulation are compared with the experimental results reported by Van Puyvelde et. at. [2000] and Ding et at. [2002].The theoretical model has been further extended, to study the rmxmg and segregation in the transverse direction for different particle sizes and their size ratios. The effect of fill fraction and rotational speed on the transverse mixing behaviour is presented in the form of a mixing index and mixing kinetics curve. The segregation pattern obtained by the simulation of the granular solid bed with respect to the rotational speed of the cylinder is presented both in graphical and numerical forms. The segregation behaviour of the granular solid bed with respect to particle size, density and volume fraction of particle size has been investigated. Several important macro parameters characterising segregation such as mixing index, percolation index and segregation index have been derived from the simulation tool based on first principles developed in this work.
Resumo:
We investigate the effect of the phase difference of appliedfields on the dynamics of mutually coupledJosephsonjunctions. A phase difference between the appliedfields desynchronizes the system. It is found that though the amplitudes of the output voltage values are uncorrelated, a phase correlation is found to exist for small values of applied phase difference. The dynamics of the system is found to change from chaotic to periodic for certain values of phase difference. We report that by keeping the value of phase difference as π, the system continues to be in periodic motion for a wide range of values of system parameters. This result may find applications in devices like voltage standards, detectors, SQUIDS, etc., where chaos is least desired.