14 resultados para Molecular probe techniques
em Cochin University of Science
Resumo:
The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.
Resumo:
In order to characterise the laser ablation process from high-Tc superconductors, the time evolution of plasma produced by a Q-switching Nd:YAG laser from a GdBa2Cu3O7 superconducting sample has been studied using spectroscopic and ion-probe techniques. It has been observed that there is a fairly large delay for the onset of the emission from oxide species in comparison with those from atoms and ions of the constituent elements present in the plasma. Faster decay occurs for emission from oxides and ions compared with that from neutral atoms. These observations support the view that oxides are not directly produced from the target, but are formed by the recombination process while the plasma cools down. Plasma parameters such as temperature and velocity are also evaluated.
Resumo:
In the present study, radio frequency plasma polymerization technique is used to prepare thin films of polyaniline, polypyrrole, poly N-methyl pyrrole and polythiophene. The thermal characterization of these films is carried out using transverse probe beam deflection method. Electrical conductivity and band gaps are also determined. The effect of iodine doping on electrical conductivity and the rate of heat diffusion is explored.Bulk samples of poyaniline and polypyrrole in powder form are synthesized by chemical route. Open photoacoustic cell configuration is employed for the thermal characterization of these samples. The effect of acid doping on heat diffusion in these bulk samples of polyaniline is also investigated. The variation of electrical conductivity of doped polyaniline and polypyrrole with temperature is also studied for drawing conclusion on the nature of conduction in these samples. In order to improve the processability of polyaniline and polypyrrole, these polymers are incorporated into a host matrix of poly vinyl chloride. Measurements of thermal diffusivity and electrical conductivity of these samples are carried out to investigate the variation of these quantities as a function of the content of polyvinyl chloride.
Resumo:
Spike disease in sandal is generally diagnosed by the manifestation of external symptoms. Attempts have been made to detect the diseased plants by determining the length/breadth ratio of leaves (lyengar, 1961) and histochemical tests using Mann's stain (Parthasarathi et al., 1966), Dienes' stain (Ananthapadmanabha et a/., 1973) aniline blue and Hoechst 33258 (Ghosh et a/., 1985, Rangaswamy, 1995). But most of these techniques are insensitive, indirect detection methods leading to misinterpretation of results. Moreover, to identify disease resistant sandal trees, highly sensitive techniques are needed to detect the presence of the pathogen. In sandal forests, several host plants of sandal like Zizyphus oenop/ea (Fig. 1.3) also exhibit the yellows type disease symptoms. Immunological and molecular assays have to be developed to confirm the presence of sandal spike phytoplasma in such hosts. The major objectives of the present work includes:In situ detection of sandal spike phytoplasma by epifluorescence microscopy and scanning electron microscopy.,Purification of sandal spike phytoplasma and production of polyclonal antibodies.,Amino acid and total protein estimation of sandal spike phytoplasma.,Immunological detection of sandal spike phytoplasma., Molecular detection of sandal spike phytoplasma.,Screening for phytoplasma in host plants of spike disease affected sandal using immunological and molecular techniques.
Resumo:
Photothermal effect refers to heating of a sample due to the absorption of electromagnetic radiation. Photothermal (PT) heat generation which is an example of energy conversion has in general three kinds of applications. 1. PT material probing 2. PT material processing and 3. PT material destruction. The temperatures involved increases from 1-. 3. Of the above three, PT material probing is the most important in making significant contribution to the field of science and technology. Photothermal material characterization relies on high sensitivity detection techniques to monitor the effects caused by PT material heating of a sample. Photothermal method is a powerful high sensitivity non-contact tool used for non-destructive thermal characterization of materials. The high sensitivity of the photothermal methods has led to its application for analysis of low absorbance samples. Laser calorimetry, photothermal radiometry, pyroelectric technique, photoacoustic technique, photothermal beam deflection technique, etc. come under the broad class ofphotothermal techniques. However the choice of a suitable technique depends upon the nature of the sample, purpose of measurement, nature of light source used, etc. The present investigations are done on polymer thin films employing photothermal beam deflection technique, for the successful determination of their thermal diffusivity. Here the sample is excited by a He-Ne laser (A = 6328...\ ) which acts as the pump beam. Due to the refractive index gradient established in the sample surface and in the adjacent coupling medium, another optical beam called probe beam (diode laser, A= 6500A ) when passed through this region experiences a deflection and is detected using a position sensitive detector and its output is fed to a lock-in amplifier from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the signal is suitably analysed for determining the thermal diffusivity.The production of polymer thin film samples has gained considerable attention for the past few years. Plasma polymerization is an inexpensive tool for fabricating organic thin films. It refers to formation of polymeric materials under the influence of plasma, which is generated by some kind of electric discharge. Here plasma of the monomer vapour is generated by employing radio frequency (MHz) techniques. Plasma polymerization technique results in homogeneous, highly adhesive, thermally stable, pinhole free, dielectric, highly branched and cross-linked polymer films. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer.Near IR overtone investigations on some organic molecules using local mode model are also done. Higher vibrational overtones often provide spectral simplification and greater resolution of peaks corresponding to nonequivalent X-H bonds where X is typically C, N or O. Vibrational overtone spectroscopy of molecules containing X-H oscillators is now a well established tool for molecular investigations. Conformational and steric differences between bonds and structural inequivalence ofCH bonds (methyl, aryl, acetylenic, etc.) are resolvable in the higher overtone spectra. The local mode model in which the X-H oscillators are considered to be loosely coupled anharmonic oscillators has been widely used for the interpretation of overtone spectra. If we are exciting a single local oscillator from the vibrational ground state to the vibrational state v, then the transition energy of the local mode overtone is given by .:lE a......v = A v + B v2 • A plot of .:lE / v versus v will yield A, the local mode frequency as the intercept and B, the local mode diagonal anharmonicity as the slope. Here A - B gives the mechanical frequency XI of the oscillator and B = X2 is the anharmonicity of the bond. The local mode parameters XI and X2 vary for non-equivalent X-H bonds and are sensitive to the inter and intra molecular environment of the X-H oscillator.
Resumo:
Material synthesizing and characterization has been one of the major areas of scientific research for the past few decades. Various techniques have been suggested for the preparation and characterization of thin films and bulk samples according to the industrial and scientific applications. Material characterization implies the determination of the electrical, magnetic, optical or thermal properties of the material under study. Though it is possible to study all these properties of a material, we concentrate on the thermal and optical properties of certain polymers. The thermal properties are detennined using photothermal beam deflection technique and the optical properties are obtained from various spectroscopic analyses. In addition, thermal properties of a class of semiconducting compounds, copper delafossites, arc determined by photoacoustic technique.Photothermal technique is one of the most powerful tools for non-destructive characterization of materials. This forms a broad class of technique, which includes laser calorimetry, pyroelectric technique, photoacollstics, photothermal radiometric technique, photothermal beam deflection technique etc. However, the choice of a suitable technique depends upon the nature of sample and its environment, purpose of measurement, nature of light source used etc. The polynler samples under the present investigation are thermally thin and optically transparent at the excitation (pump beam) wavelength. Photothermal beam deflection technique is advantageous in that it can be used for the detennination of thermal diffusivity of samples irrespective of them being thermally thick or thennally thin and optically opaque or optically transparent. Hence of all the abovementioned techniques, photothemlal beam deflection technique is employed for the successful determination of thermal diffusivity of these polymer samples. However, the semi conducting samples studied are themlally thick and optically opaque and therefore, a much simpler photoacoustic technique is used for the thermal characterization.The production of polymer thin film samples has gained considerable attention for the past few years. Different techniques like plasma polymerization, electron bombardment, ultra violet irradiation and thermal evaporation can be used for the preparation of polymer thin films from their respective monomers. Among these, plasma polymerization or glow discharge polymerization has been widely lIsed for polymer thin fi Im preparation. At the earlier stages of the discovery, the plasma polymerization technique was not treated as a standard method for preparation of polymers. This method gained importance only when they were used to make special coatings on metals and began to be recognized as a technique for synthesizing polymers. Thc well-recognized concept of conventional polymerization is based on molecular processcs by which thc size of the molecule increases and rearrangemcnt of atoms within a molecule seldom occurs. However, polymer formation in plasma is recognized as an atomic process in contrast to the above molecular process. These films are pinhole free, highly branched and cross linked, heat resistant, exceptionally dielectric etc. The optical properties like the direct and indirect bandgaps, refractive indices etc of certain plasma polymerized thin films prepared are determined from the UV -VIS-NIR absorption and transmission spectra. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer. The thermal diffusivity has been measured using the photothermal beam deflection technique as stated earlier. This technique measures the refractive index gradient established in the sample surface and in the adjacent coupling medium, by passing another optical beam (probe beam) through this region and hence the name probe beam deflection. The deflection is detected using a position sensitive detector and its output is fed to a lock-in-amplifIer from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the deflection signal is suitably analyzed for determining the thermal diffusivity.Another class of compounds under the present investigation is copper delafossites. These samples in the form of pellets are thermally thick and optically opaque. Thermal diffusivity of such semiconductors is investigated using the photoacoustic technique, which measures the pressure change using an elcctret microphone. The output of the microphone is fed to a lock-in-amplificr to obtain the amplitude and phase from which the thermal properties are obtained. The variation in thermal diffusivity with composition is studied.
Resumo:
The main objective of the present study is to understand different mechanisms involved in the production and evolution of plasma by the pulsed laser ablation and radio frequency magnetron sputtering. These two methods are of particular interest, as these are well accomplished methods used for surface coatings, nanostructure fabrications and other thin film devices fabrications. Material science researchers all over the world are involved in the development of devices based on transparent conducting oxide (TCO) thin films. Our laboratory has been involved in the development of TCO devices like thin film diodes using zinc oxide (ZnO) and zinc magnesium oxide (ZnMgO), thin film transistors (TFT's) using zinc indium oxide and zinc indium tin oxide, and some electroluminescent (EL) devices by pulsed laser ablation and RF magnetron sputtering.In contrast to the extensive literature relating to pure ZnO and other thin films produced by various deposition techniques, there appears to have been relatively little effort directed towards the characterization of plasmas from which such films are produced. The knowledge of plasma dynamics corresponding to the variations in the input parameters of ablation and sputtering, with the kind of laser/magnetron used for the generation of plasma, is limited. To improve the quality of the deposited films for desired application, a sound understanding of the plume dynamics, physical and chemical properties of the species in the plume is required. Generally, there is a correlation between the plume dynamics and the structural properties of the films deposited. Thus the study of the characteristics of the plume contributes to a better understanding and control of the deposition process itself. The hydrodynamic expansion of the plume, the composition, and SIze distribution of clusters depend not only on initial conditions of plasma production but also on the ambient gas composition and pressure. The growth and deposition of the films are detennined by the thermodynamic parameters of the target material and initial conditions such as electron temperature and density of the plasma.For optimizing the deposition parameters of various films (stoichiometric or otherwise), in-situ or ex-situ monitoring of plasma plume dynamics become necessary for the purpose of repeatability and reliability. With this in mind, the plume dynamics and compositions of laser ablated and RF magnetron sputtered zinc oxide plasmas have been investigated. The plasmas studied were produced at conditions employed typically for the deposition of ZnO films by both methods. Apart from this two component ZnO plasma, a multi-component material (lead zirconium titanate) was ablated and plasma was characterized.
Resumo:
The present study aimed at the utlisation of microbial organisms for the
production of good quality chitin and chitosan. The three strains used for the
study were Lactobacillus plantarum, Lactobacililus brevis and Bacillus subtilis.
These strains were selected on the basis of their acid producing ability to reduce
the pH of the fermenting substrates to prevent spoilage and thus caused
demineralisation of the shell. Besides, the proteolytic enzymes in these strains
acted on proteinaceous covering of shrimp and thus caused deprotenisation of
shrimp shell waste. Thus the two processes involved in chitin production can be
affected to certain extent using bacterial fermentation of shrimp shell.Optimization parameters like fermentation period, quantity of inoculum,
type of sugar, concentration of sugar etc. for fermentation with three different
strains were studied. For these, parameters like pH, Total titrable acidity (TTA),
changes in sugar concentration, changes in microbial count, sensory changes
etc. were studied.Fermentation study with Lactobacillus plantarum was continued with 20%
w/v jaggery broth for 15 days. The inoculum prepared yislded a cell
concentration of approximately 108 CFU/ml. In the present study, lactic acid and
dilute hydrochloric acid were used for initial pH adjustment because; without
adjusting the initial pH, it took more than 5 hours for the lactic acid bacteria to
convert glucose to lactic acid and during this delay spoilage occurred due to
putrefying enzymes active at neutral or higher pH. During the fermentation study,
pH first decreased in correspondence with increase in TTA values. This showed
a clear indication of acid production by the strain. This trend continued till their
proteolytic activity showed an increasing trend. When the available sugar source
started depleting, proteolytic activity also decreased and pH increased. This was
clearly reflected in the sensory evaluation results. Lactic acid treated samples
showed greater extent of demineralization and deprotenisation at the end of
fermentation study than hydrochloric acid treated samples. It can be due to the
effect of strong hydrochloric acid on the initial microbial count, which directly
affects the fermentation process. At the end of fermentation, about 76.5% of ash was removed in lactic acid treated samples and 71.8% in hydrochloric acid
treated samples; 72.8% of proteins in lactic acid treated samples and 70.6% in
hydrochloric acid treated samples.The residual protein and ash in the fermented residue were reduced to
permissible limit by treatment with 0.8N HCI and 1M NaOH. Characteristics of
chitin like chitin content, ash content, protein content, % of N- acetylation etc.
were studied. Quality characteristics like viscosity, degree of deacetylation and
molecular weight of chitosan prepared were also compared. The chitosan
samples prepared from lactic acid treated showed high viscosity than HCI treated
samples. But degree of deacetylation is more in HCI treated samples than lactic
acid treated ones. Characteristics of protein liquor obtained like its biogenic
composition, amino acid composition, total volatile base nitrogen, alpha amino
nitrogen etc. also were studied to find out its suitability as animal feed
supplement.Optimization of fermentation parameters for Lactobacillus brevis
fermentation study was also conducted and parameters were standardized. Then
detailed fermentation study was done in 20%wlv jaggery broth for 17 days. Also
the effect of two different acid treatments (mild HCI and lactic acid) used for initial
pH adjustment on chitin production were also studied. In this study also trend of
changes in pH. changes in sugar concentration ,microbial count changes were
similar to Lactobacillus plantarum studies. At the end of fermentation, residual
protein in the samples were only 32.48% in HCI treated samples and 31.85% in
lactic acid treated samples. The residual ash content was about 33.68% in HCI
treated ones and 32.52% in lactic acid treated ones. The fermented residue was
converted to chitin with good characteristics by treatment with 1.2MNaOH and
1NHCI.Characteristics of chitin samples prepared were studied and extent of Nacetylation
was about 84% in HCI treated chitin and 85%in lactic acid treated
ones assessed from FTIR spectrum. Chitosan was prepared from these samples
by usual chemical method and its extent of solubility, degree of deacetylation,
viscosity and molecular weight etc were studied. The values of viscosity and
molecular weight of the samples prepared were comparatively less than the
chitosan prepared by Lactobacillus plantarum fermentation. Characteristics of protein liquor obtained were analyzed to determine its quality and is suitability as
animal feed supplement.Another strain used for the study was Bacillus subtilis and fermentation
was carried out in 20%w/v jaggery broth for 15 days. It was found that Bacillus
subtilis was more efficient than other Lactobacillus species for deprotenisation
and demineralization. This was mainly due to the difference in the proteolytic
nature of the strains. About 84% of protein and 72% of ash were removed at the
end of fermentation. Considering the statistical significance (P
Resumo:
The constitutive production of AMPs in shrimps ensures that animals are able to protect themselves from low-level assaults by pathogens present in the environment. As these molecules play important roles in the shrimp immune defense system, the expression level of these AMPs are possible indicators of the immune state of shrimps. The present study also indicates the antiviral property of AMPs, especially ALF, stressing the importance of their up-regulation through the application of immunostimulants/probiotics as a prophylactic strategy in aquaculture. The present study shows that shrimp defense system is equipped enough to evade WSSV infection to a certain extent, when the animals were maintained on marine yeast and probiotic diet, whereas the control diet fed group succumbed to WSSV infection. This study reveals that marine yeast and probiotic supplemented diet can delay the process of WSSV infection and confer greater protection to the animals. Particularly, the protection conferred by marine yeast, C. haemulonii S27 and Bacillus MCCB101 were highly promising imparting greater hope to the aquaculture community to overcome the prevailing disease problems in aquaculture. It may be inferred from the present study that up-regulation of AMP genes could be effected by the application of immunostimulants and probiotics. Also, AMP expression profile could be used as an effective tool for screening immunostimulants and probiotics for application in shrimp culture. Ultimately, it is likely that no single compound or strategy will provide a solution to the problem of disease within aquaculture and that, in reality, a suite of techniques will be required including the manipulation of the rearing environment, addition of probionts as a matter of routine during culture, and the use of immunostimulants and other supplements during vulnerable growth phases. Finally, the development of good management practices, the control of environmental variables, genetic improvement in the penaeid species, understanding of host-virus interaction, modulation of the shrimp immune system, supported by functional genomics and proteomics of this crustacean, as a whole suggests that the control of WSSV is not far.
Resumo:
The family Cyprinidae is the largest of freshwater fishes and, with the possible exception of Gobiidae, the largest family of vertebrates.Various members of this family are important as food fish, as aquarium fish, and in biological research. In this study, a fish species from this family exclusively found in the west flowing rivers originating from the Western Ghat region — Gonoproktopterus curmuca — was taken for population genetic analysis.There was an urgent need for restoration ecology by the development of apt management strategies to exploit resources judiciously. One of the strategies thus developed for the scientific management of these resources was to identify the natural units of the fishery resources under exploitation (Altukov, 1981). These natural units of a species can otherwise be called as stocks. A stock can be defined as a panmictic population of related individuals within a single species that is genetically distinct from other such populations.It is believed that a species may undergo micro evolutionary process and differentiate into genetically distinct sub-populations or stocks in course of time, if reproductively and geographically isolated.In recent times, there has been a wide spread degradation of natural aquatic environment due to anthropogenic activities and this has resulted in the decline and even extinction of some fish species. In such situations, evaluation of the genetic diversity of fish resources assumes important to conservation.The species selected for the study, was short-listed as one of the candidates for stock-specific, propagation assisted rehabilitation and management programme in rivers where it is naturally distributed. In connection with this, captive breeding and milt cryopreservation techniques of the species have been developed by the National Bureau of Fish Genetic Resources, Lucknow. However, for a scientific stock-specific rehabilitation programme, information on the stock structure and basic genetic profile of the species are essential and that is not available in case of G. curmuca. So the present work was taken up to identify molecular genetic markers like allozymes, microsatellites and RAPDs and, to use these markers to discriminate the distinct populations of the species, if any, in areas of its natural distribution. The genetic markers were found to be powerful tools to analyze the population genetic structure of the red-tailed barb and demonstrated clear cut genetic differentiation between pairs of populations examined. Geographic isolation by land distance is likely to be the factor that contributed to the restricted gene flow between the river systems. So the present study emphasizes the need for stock-wise, propagation assisted-rehabilitation of the natural populations of red-tailed barb, Gonoprokfopterus curmuca.
Resumo:
The major objective of the thesis is essentially to evolve and apply certain computational procedures to evaluate the structure and properties of some simple polyatomic molecules making use of spectroscopic data available from the literature. It must be said that though there is dwindling interest in recent times in such analyses, there exists tremendous scope and utility for attempting such calculations as the precision and reliability of'experimental techniques in spectroscopy have increased vastly due to enormous sophistication of the instruments used for these measurements. In the present thesis an attempt is made to extract maximum amount of information regarding the geometrical structure and interatmic forces of simple molecules from the experimental data on microwave and infrared spectra of these molecules
Resumo:
Cochin, commercial capital of Kerala, located on the west-coast of South India has a large number of chemical and sea food industries. Earlier studies in the past indicated that these industries contribute to heavy metal pollution, particularly mercury, copper, and cadmium, in Cochin backwater. Hence, in the present study, it was desired to isolate cadmium resistant bacteria from effluent discharged by chemical industry with a view to develop an ideal bioremediation process for safe discharge of industrial effluent in to the nearby aquatic environment. Effluent from three industries, located in the industrial belt of Cochin, were collected from the discharge point and cadmium resistant bacteria were screened using standard microbiological techniques
Resumo:
The primary habitat of Salmonella is the gastrointestinal tract of animals and they are discharged into the water bodies through the feces. Aquatic animals act as asymptomatic reservoirs of a wide range of Salmonella serotypes. The inevitable delay in the detection of Salmonella contamination and the low sensitivity of the conventional methods is a serious issue in the seafood industry. Due to the indiscriminate use, the antibiotics are finally accumulated in the aquatic environment which provides the required antibiotic stress for the emergence of more and more antibiotic resistant phenotypes ofSalmonella. Several genetic determinants like integrons, genomic islands etc. play their role in acquisition and reshuffling of antibiotic resistance genes. A large number of virulence determinants are required for Salmonella pathogenicity. The virulence potential of Salmonella is determined, to some extent, by the presence of phages or phage mediated genes in the bacterial genome. There is much intra-serotype polymorphism in Salmonella and epidemiological studies rely on genetic resemblance of the isolated strains. Proper identification of the strain employing the traditional and molecular techniques is a prerequisite for accurate epidemiological studies (Soto et al., 2000). In this context, a study was undertaken to determine the prevalence of different Salmonella serotypes in seafood and to characterize them
Resumo:
Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycemia with disturbances in carbohydrate, protein and lipid metabolism resulting from defects in insulin secretion, insulin action or both. Currently there are 387 million people with diabetes worldwide and is expected to affect 592 million people by 2035. Insulin resistance in peripheral tissues and pancreatic beta cell dysfunction are the major challenges in the pathophysiology of diabetes. Diabetic secondary complications (like liver cirrhosis, retinopathy, microvascular and macrovascular complications) arise from persistent hyperglycemia and dyslipidemia can be disabling or even life threatening. Current medications are effective for control and management of hyperglycemia but undesirable effects, inefficiency against secondary complications and high cost are still serious issues in the present prognosis of this disorder. Hence the search for more effective and safer therapeutic agents of natural origin has been found to be highly demanding and attract attention in the present drug discovery research. The data available from Ayurveda on various medicinal plants for treatment of diabetes can efficiently yield potential new lead as antidiabetic agents. For wider acceptability and popularity of herbal remedies available in Ayurveda scientific validation by the elucidation of mechanism of action is very much essential. Modern biological techniques are available now to elucidate the biochemical basis of the effectiveness of these medicinal plants. Keeping this idea the research programme under this thesis has been planned to evaluate the molecular mechanism responsible for the antidiabetic property of Symplocos cochinchinensis, the main ingredient of Nishakathakadi Kashayam, a wellknown Ayurvedic antidiabetic preparation. A general introduction of diabetes, its pathophysiology, secondary complications and current treatment options, innovative solutions based on phytomedicine etc has been described in Chapter 1. The effect of Symplocos cochinchinensis (SC), on various in vitro biochemical targets relevant to diabetes is depicted in Chapter 2 including the preparation of plant extract. Since diabetes is a multifactorial disease, ethanolic extract of the bark of SC (SCE) and its fractions (hexane, dichloromethane, ethyl acetate and 90 % ethanol) were evaluated by in vitro methods against multiple targets such as control of postprandial hyperglycemia, insulin resistance, oxidative stress, pancreatic beta cell proliferation, inhibition of protein glycation, protein tyrosine phosphatase-1B (PTP-1B) and dipeptidyl peptidase-IV (DPPxxi IV). Among the extracts, SCE exhibited comparatively better activity like alpha glucosidase inhibition, insulin dependent glucose uptake (3 fold increase) in L6 myotubes, pancreatic beta cell regeneration in RIN-m5F and reduced triglyceride accumulation in 3T3-L1 cells, protection from hyperglycemia induced generation of reactive oxygen species in HepG2 cells with moderate antiglycation and PTP-1B inhibition. Chemical characterization by HPLC revealed the superiority of SCE over other extracts due to presence of bioactives (beta-sitosterol, phloretin 2’glucoside, oleanolic acid) in addition to minerals like magnesium, calcium, potassium, sodium, zinc and manganese. So SCE has been subjected to oral sucrose tolerance test (OGTT) to evaluate its antihyperglycemic property in mild diabetic and diabetic animal models. SCE showed significant antihyperglycemic activity in in vivo diabetic models. Chapter 3 highlights the beneficial effects of hydroethanol extract of Symplocos cochinchinensis (SCE) against hyperglycemia associated secondary complications in streptozotocin (60 mg/kg body weight) induced diabetic rat model. Proper sanction had been obtained for all the animal experiments from CSIR-CDRI institutional animal ethics committee. The experimental groups consist of normal control (NC), N + SCE 500 mg/kg bwd, diabetic control (DC), D + metformin 100 mg/kg bwd, D + SCE 250 and D + SCE 500. SCEs and metformin were administered daily for 21 days and sacrificed on day 22. Oral glucose tolerance test, plasma insulin, % HbA1c, urea, creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, total protein etc. were analysed. Aldose reductase (AR) activity in the eye lens was also checked. On day 21, DC rats showed significantly abnormal glucose response, HOMA-IR, % HbA1c, decreased activity of antioxidant enzymes and GSH, elevated AR activity, hepatic and renal oxidative stress markers compared to NC. DC rats also exhibited increased level of plasma urea and creatinine. Treatment with SCE protected from the deleterious alterations of biochemical parameters in a dose dependent manner including histopathological alterations in pancreas. SCE 500 exhibited significant glucose lowering effect and decreased HOMA-IR, % HbA1c, lens AR activity, and hepatic, renal oxidative stress and function markers compared to DC group. Considerable amount of liver and muscle glycogen was replenished by SCE treatment in diabetic animals. Although metformin showed better effect, the activity of SCE was very much comparable with this drug. xxii The possible molecular mechanism behind the protective property of S. cochinchinensis against the insulin resistance in peripheral tissue as well as dyslipidemia in in vivo high fructose saturated fat diet model is described in Chapter 4. Initially animal were fed a high fructose saturated fat (HFS) diet for a period of 8 weeks to develop insulin resistance and dyslipidemia. The normal diet control (ND), ND + SCE 500 mg/kg bwd, high fructose saturated fat diet control (HFS), HFS + metformin 100 mg/kg bwd, HFS + SCE 250 and HFS + SCE 500 were the experimental groups. SCEs and metformin were administered daily for the next 3 weeks and sacrificed at the end of 11th week. At the end of week 11, HFS rats showed significantly abnormal glucose and insulin tolerance, HOMA-IR, % HbA1c, adiponectin, lipid profile, liver glycolytic and gluconeogenic enzyme activities, liver and muscle triglyceride accumulation compared to ND. HFS rats also exhibited increased level of plasma inflammatory cytokines, upregulated mRNA level of gluconeogenic and lipogenic genes in liver. HFS exhibited the increased expression of GLUT-2 in liver and decreased expression of GLUT-4 in muscle and adipose. SCE treatment also preserved the architecture of pancreas, liver, and kidney tissues. Treatment with SCE reversed the alterations of biochemical parameters, improved insulin sensitivity by modifying gene expression in liver, muscle and adipose tissues. Overall results suggest that SC mediates the antidiabetic activity mainly via alpha glucosidase inhibition, improved insulin sensitivity, with antiglycation and antioxidant activities.