4 resultados para Molecular modeling algorithms
em Cochin University of Science
Resumo:
A series of novel naphthyridine derivatives 3 and 4 was prepared from substituted pyridine 2 and ketones using ZnCl2 as catalyst under microwave irradiation conditions. All the compounds were evaluated for AChE inhibitory activity and promising compounds 3d, 3e, 4b, and 4g was identified. Representative compounds 3d and 3e were found to show insignificant THLE-2 liver cell viability/toxicity. The binding mode between X-ray crystal structure of human AChE and compounds was studied using molecular docking method and fitness scores were found to be in good correlation with the activity data.
Resumo:
Liquid Crystalline DNA is emerging as an active area of research, due to its potential applications in diverse fields, ranging from nanoelectronics to therapeutics. Since, counter ion neutralization is an essential requirement for the expression of LC DNA, and the present level of understanding on the LC phase behavior of high molecular weight DNA is inadequate, a thorough investigation is required to understand the nature and stability of these phases under the influence of various cationic species. The present study is, therefore mainly focused on a comparative investigation of the effect of metal ions of varying charge, size, hydration and binding modes on the LC phase behavior of high molecular weight DNA. The main objectives of the works are investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkali metal ions, investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkaline earth metal ions, effects of multivalent, transition and heavy metal ions on the LC phase behavior of high molecular weight DNA and investigations on spermine induced LC behavior of high molecular weight DNA in the presence of alkali and alkaline earth metal ions. The critical DNA concentration (CD) required for the expression of LC phases, phase transitions and their stability varied considerably when the binding site of the metal ions changed from phosphate groups to the nitrogenous bases of DNA, with Li+ giving the highest stability. Multiple LC phases with different textures, sometimes diffused and unstable or otherwise mainly distinct and clear, were observed on mixing metal ions with DNA solutions, which in turn depended on the charge, size, hydration factor, binding modes, concentration of the metal ions and time. Molecular modeling studies on binding of selected metal ions to DNA supported the experimental findings
Resumo:
National Centre for Aquatic Animal Health, Cochin University of Science and Technology
Resumo:
Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.