28 resultados para Molecular and Phylogenetic Characterization of Bacillus spp
em Cochin University of Science
Resumo:
The marine environment is indubitably the largest contiguous habitat on Earth. Because of its vast volume and area, the influence of the world ocean on global climate is profound and plays an important role in human welfare and destiny. The marine environment encompasses several habitats, from the sea surface layer down through the bulk water column, which extends >10,000 meters depth, and further down to the habitats on and under the sea floor. Compared to surface habitats, which have relatively high kinetic energy, deep-ocean circulation is very sluggish. By comparison, life in the deep sea is characterized by a relatively constant physical and chemical environment. Deep water occupying the world ocean basin is a potential natural resource based on its properties such as low temperature, high pressure and relatively unexplored properties. So, a judicious assessment of the marine resources and its management are essential to ensure sustainable development of the country’s ocean resources. Marine sediments are complex environments that are affected by both physiological and biological factors, water movements and burrowing animals. They encompass a large extent of aggregates falling from the surface waters. In aquatic ecosystems, the flux of organic matter to the bottom sediments depend on primary productivity at the ocean surface and water depth. Over 50% of the earth’s surface is covered by deep-sea sediments that are primarily formed through the continual deposition of particles from the productive pelagic waters (Vetriani et al., 1999). These aggregates are regarded as ‘hot spots’ of microbial activity in the ocean (Simon et al., 2002). This represents a good nutritional substrate for heterotrophic bacteria and favours bacterial growth
Resumo:
Most living organisms are constantly exposed to potentially harmful pathogens. It is the immune system of the organism that enables it to survive in an environment loaded with dangerous pathogenic microorganisms. The innate immunity provides organisms with a rapid and non-specific first line of defense against pathogens. It includes physical barriers such as skin and mucous membranes and chemical barriers including the high acidity of gastric juice, and specialized soluble molecules that possess antimicrobial activity. One of the well-known innate immune defense mechanisms is the production of antimicrobial substances by specific cells or tissues of the organisms. Antimicrobial peptides (AMPs) are such natural substances that
Resumo:
Antimicrobial peptides (AMPs) are gene encoded, small sized, generally cationic, amphiphathic peptides characterized by antimicrobial activity against bacteria, fungi, viruses and other pathogens. They are a major component of the innate immune defense system of almost all living organisms, ranging from bacteria to humans and represent the first line of defense against the invading microbial pathogens (Boman, 1995; Zasloff, 2002). Antimicrobial peptides represent a heterogeneous group displaying multiple modes of action that are determined by the sequence and concentration of peptides. Their remarkable specificity for prokaryotes with low toxicity for eukaryotic cells has favored their investigation and exploitation as new antibiotics
Resumo:
Antimicrobial peptides (AMPs) play a major role in innate immunity. Penaeidins are a family of AMPs that appear to be expressed in all penaeid shrimps. Penaeidins are composed of an N-terminal proline-rich domain, followed by a C-terminal domain containing six cysteine residues organized in two doublets. This study reports the first penaeidin AMP sequence, Fi-penaeidin (GenBank accession number HM243617) from the Indian white shrimp, Fenneropenaeus indicus. The full length cDNA consists of 186 base pairs encoding 61 amino acidswith an ORF of 42 amino acids and contains a putative signal peptide of 19 amino acids. Comparison of F. indicus penaeidin (Fi-penaeidin) with other known penaeidins showed that it shared maximum similarity with penaeidins of Farfantepenaeus paulensis and Farfantepenaeus subtilis (96% each). Fi-penaeidin has a predicted molecular weight (MW) of 4.478 kDa and theoretical isoelectric point (pI) of 5.3
Resumo:
the present study was undertaken with the following objectives: 1. Isolation and identification of yeasts from Arabian Sea and Bay of Bengal. 2. Molecular characterization of yeast isolates and phylogenetic analysis 3. Physiological and biochemical characterization of the isolates. 4. Proximate composition of yeast biomass and bioactive compounds. The Thesis is comprised of six chapters. A general introduction to the topic is given in Chapter1. Isolation and identification of marine yeasts are presented in Chapter 2. Chapter 3 deals with molecular identification and physiological characterization of Non- pigmented yeasts. Molecular identification and physiological characterization of pigmented yeast is presented in Chapter 4. Proximate composition of yeast biomass of various genera and their bioactive compounds are illustrated in Chapter 5. A summary of the results of the present study is given in Chapter 6. References and Appendices are followed
Resumo:
The thesis is comprised of seven chapters. Chapter 1 gives a general introduction to marine actinomycetes; Chapter 2 gives an account on the morphological, biochemical and physiological characterization of marine actinomycetes. Comprehensive description of molecular identification and phylogenetic analysis of actinomycetes is dealt with in Chapter 3. The antimicrobial property with special reference to antivibrio activity is described in Chapter 4. Chapter 5 explores the melanin production ability of marine actinomycetes, characterization of melanin and evaluation of its bioactivity. Chapter 6 illustrates the study on chitinolytic Streptomyces as antifungal and insecticidal agents. Summary and Conclusion of the study is presented in Chapter 7, followed by References and Appendices.The present study provides an insight into the various actinomycetes occurring in the sediments of Arabian Sea and Bay of Bengal. Streptomyces was found to be the dominant group followed by Nocardiopsis. Eventhough generic level identification is possible by traditional phenotypic methods, species level identification necessitate a polyphasic approach including both phenotypic and genotypic characterization. Antibiotic production coupled with biogranulation property helped in the effective utilization of the actinomycetes for the control of vibrios. Melanin from Streptomyces bikiniensis was proved to be a promising antioxidant and photoprotectant. Marine actinomycetes were found to be a good source of hydrolytic enzymes and the chitinolytic isolates could be explored as biocontrol agents in terms of antifungal and insecticidal property. The present study explored the potential of marine actinomycetes especially Streptomycetes as a promising source of bioactive molecules for application in aquaculture and pharmaceutical industry.
Resumo:
Hepcidin is a family of short cysteine-rich antimicrobial peptides (AMPs) participating in various physiological functions with inevitable role in host immune responses. Present study deals with identification and characterisation of a novel hepcidin isoform from coral fish Zanclus cornutus. The 81 amino acid (aa) preprohepcidin obtained from Z. cornutus consists of a hydrophobic aa rich 22 mer signal peptide, a highly variable proregion of 35 aa and a bioactive mature peptide with 8 conserved cysteine residues which contribute to the disulphide back bone. The mature hepcidin, Zc-hepc1 has a theoretical isoelectric point of 7.46, a predicted molecular weight of 2.43 kDa and a net positive charge of ?1. Phylogenetic analysis grouped Z. cornutus hepcidin with HAMP2 group hepcidins confirming the divergent evolution of hepcidin-like peptide in fishes. Zc-hepc1 can attain a b-hairpin-like structure with two antiparallel b-sheets. This is the first report of an AMP from the coral fish Z. cornutus.
Resumo:
Engyodontium album isolated from marine sediment produced protease, which was active at pH 11. Process parameters influencing the production of alkaline protease by marine E. album was optimized. Particle size of <425 mm, 60% initial moisture content and incubation at 25 8C for 120 h were optimal for protease production under solid state fermentation (SSF) using wheat bran. The organism has two optimal pH (5 and 10) for maximal enzyme production. Sucrose as carbon source, ammonium hydrogen carbonate as additional inorganic nitrogen source and amino acid leucine enhanced enzyme production during SSF. The protease was purified and partially characterized. A 16-fold purified enzyme was obtained after ammonium sulphate precipitation and ion-exchange chromatography. Molecular weight of the purified enzyme protein was recorded approximately 38 kDa by SDS-PAGE. The enzyme showed maximum activity at pH 11 and 60 8C. Activity at high temperature and high alkaline pH suggests suitability of the enzyme for its application in detergent industry
Resumo:
Nondestructive photothermal methods as well as optical absorption and fluorescence spectroscopy are utilized to characterise three different materials, both thermally and optically. The possibility of using montmorillonite clay minerals, after textile waste-water treatment, is investigated for further applications. The laser induced luminescence studies and thermal characterisation of certain rare earth titanates prepared by self propagating high temperature synthesis method are also presented. Moreover, effort is made to characterise rare earth doped sol gel silica glasses with the help of these nondestructive techniques.
Resumo:
A series of nonelectrolytic lanthanide(III) complexes, [ ML 2 Cl 3 ] · 2 H 2 O, where M is lanthanum(III), praseodymium(III), neodymium(III), samarium(III), gadolinium(III), terbium(III), dysprosium(III), and yttrium(III), containing sulfamethoxazole ligand (L) are prepared. The structure and bonding of the ligand are studied by elemental analysis, magnetic susceptibility measurements, IR, 1 H NMR, TG / DTA , X-ray diffraction studies, and electronic spectra of the complexes. The stereochemistry around the metal ions is a monocapped trigonal prism in which four of the coordination sites are occupied by two each from two chelating ligands, sulfonyl oxygen, and nitrogen of the amide group and the remaining three positions are occupied by three chlorines. The ligand and the new complexes were tested in vitro to evaluate their activity against the bacteria Escherichia coli and Staphylococcus aureus.
Resumo:
School of Industrial Fisheries, Cochin University of Science and Technology
Resumo:
Biotechnology is currently considered as a useful altemative to conventional process technology in industrial and catalytic fields. The increasing awareness of the need to create green and sustainable production processes in all fields of chemistry has stimulated materials scientists to search for innovative catalysts supports. lmmobilization of enzymes in inorganic matrices is very useful in practical applications due to the preserved stability and catalytic activity of the immobilized enzymes under extreme conditions. Nanostructured inorganic, organic or hybrid organic-inorganic nanocomposites present paramount advantages to facilitate integration and miniaturization of the devices (nanotechnologies), thus affording a direct connection between the inorganic, organic and biological worlds. These properties, combined with good chemical stability, make them competent candidates for designed biocatalysts, protein-separation devices, drug delivery systems, and biosensors Aluininosilicate clays and layered double hydroxides, displaying, respectively, cation and anion exchange properties, were found to be attractive materials for immobilization because of their hydrophilic, swelling and porosity properties, as well as their mechanical and thermal stability.The aim of this study is the replacement of inorganic catalysts by immobilized lipases to obtain purer and healthier products.Mesocellular silica foams were synthesized by oil-in-water microemulsion templating route and were functionalized with silane and glutaraldehyde. " The experimental results from IR spectroscopy and elemental analysis demonstrated the presence of immobilized lipase and also functionalisation with silane and glutaraldehyde on the supports.The present work is a comprehensive study on enzymatic synthesis of butyl isobutyrate through esterification reaction using lipase immobilized onto mesocellular siliceous foams and montmorillonite K-10 via adsorption and covalent binding. Moreover, the irnrnobil-ization does not modify the nature of the kinetic mechanism proposed which is of the Bi-Bi Ping—Pong type with inhibition by n-butanol. The immobilized biocatalyst can be commercially exploited for the synthesis of other short chain flavor esters. Mesocellular silica foams (MCF) were synthesized by microemusion templating method via two different routes (hydrothermal and room temperature). and were functionalized with silane and glutaraldehyde. Candida rugosa lipase was adsorbed onto MCF silica and clay using heptane as the coupling medium for reactions in non-aqueous media. I From XRD results, a slight broadening and lowering of d spacing values after immobilization and modification was observed in the case of MCF 160 and MCF35 but there was no change in the d-spacing in the case of K-10 which showed that the enzymes are adsorbed only on the external surface. This was further confirmed from the nitrogen adsorption measurements
Resumo:
The advent of high optical quality transparent nano—structured glasses, the so-called transparent glass ceramics or vitroceramics disclosed the possibility of producing nano-sized photonic devices based on rare-earth doped up—converters. Transparent glass ceramics have been investigated as hosts for lanthanide ions envisioning the production of materials that are easy to shape and with high performance for photonic applications. Rare earth doped glasses have been extensively studied due to their potential applications in optical devices such as solid state lasers and optical fibers. Various photothermal and optical techniques have been successfully applied for the thermal and optical characterization of these rare earth doped materials. In the present thesis, the effective thermal parameters like thermal diffusivity and thermal effusivity of complex materials for various applications have been investigated using photothermal methods along with their optical characterization utilising the common optical absorption as well as fluorescence spectroscopic techniques. These sensitive optical procedures are also essential for exploiting these materials for further photonic applications.
Resumo:
The main challenges in the deposition of cathode materials in thin film form are the reproduction of stoichiometry close to the bulk material and attaining higher rates of deposition and excellent crystallinity at comparatively lower annealing temperatures. There are several methods available to develop stoichiometric thin film cathode materials including pulsed laser deposition; plasma enhanced chemical vapor deposition, electron beam evaporation, electrostatic spray deposition and RF magnetron sputtering. Among them the most versatile method is the sputtering technique, owing to its suitability for micro-fabricating the thin film batteries directly on chips in any shape or size, and on flexible substrates, with good capacity and cycle life. The main drawback of the conventional sputtering technique using RF frequency of 13.56MHz is its lower rate of deposition, compared to other deposition techniques A typical cathode layer for a thin film battery requires a thickness around one micron. To deposit such thick layers using convention RF sputtering, longer time of deposition is required, since the deposition rate is very low, which is typically 10-20 Å/min. This makes the conventional RF sputtering technique a less viable option for mass production in an economical way. There exists a host of theoretical and experimental evidences and results that higher excitation frequency can be efficiently used to deposit good quality films at higher deposition rates with glow discharge plasma. The effect of frequencies higher than the conventional one (13.56MHz) on the RF magnetron sputtering process has not been subjected to detailed investigations. Attempts have been made in the present work, to sputter deposit spinel oxide cathode films, using high frequency RF excitation source. Most importantly, the major challenge faced by the thin film battery based on the LiMn2O4 cathode material is the poor capacity retention during charge discharge cycling. The major causes for the capacity fading reported in LiMn2O4cathode materials are due to, Jahn-Teller distortion, Mn2+ dissolution into the electrolyte and oxygen loss in cathode material during cycling. The work discussed in this thesis is an attempt on overcoming the above said challenges and developing a high capacity thin film cathode material.
Resumo:
Four hydrazone ligands: 2-benzoylpyridine benzoyl hydrazone (HBPB), di-2-pyridyl ketone nicotinoyl hydrazone (HDKN), quinoline-2-carbaldehyde benzoyl hydrazone (HQCB), and quinoline-2-carbaldehyde nicotinoyl hydrazone (HQCN) and four of their complexes with vanadyl salts have been synthesized and characterized. Single crystals of HBPB and complexes [VO(BPB)(l2-O)]2 (1) and [VO(DKN)(l2-O)]2 ½H2O (2) were isolated and characterized by X-ray crystallography. Each of the complexes exhibits a binuclear structure where two vanadium(V) atoms are bridged by two oxygen atoms to form distorted octahedral structures within cis-N2O4 donor sets. In most complexes, the uninegative anions function as tridentate ligands, coordinating through the pyridyl- and azomethine-nitrogen atoms and enolic oxygen whereas in complex [VO(HQCN)(SO4)]SO4 4H2O (4) the ligand is coordinated in the keto form. Complexes [VO(QCB)( OMe)] 1.5H2O (3) and 4 are found to be EPR active and showed well-resolved axial anisotropy with two sets of eight line pattern