7 resultados para Modeling Rapport Using Hidden Markov Models
em Cochin University of Science
Resumo:
This thesis deals with the use of simulation as a problem-solving tool to solve a few logistic system related problems. More specifically it relates to studies on transport terminals. Transport terminals are key elements in the supply chains of industrial systems. One of the problems related to use of simulation is that of the multiplicity of models needed to study different problems. There is a need for development of methodologies related to conceptual modelling which will help reduce the number of models needed. Three different logistic terminal systems Viz. a railway yard, container terminal of apart and airport terminal were selected as cases for this study. The standard methodology for simulation development consisting of system study and data collection, conceptual model design, detailed model design and development, model verification and validation, experimentation, and analysis of results, reporting of finding were carried out. We found that models could be classified into tightly pre-scheduled, moderately pre-scheduled and unscheduled systems. Three types simulation models( called TYPE 1, TYPE 2 and TYPE 3) of various terminal operations were developed in the simulation package Extend. All models were of the type discrete-event simulation. Simulation models were successfully used to help solve strategic, tactical and operational problems related to three important logistic terminals as set in our objectives. From the point of contribution to conceptual modelling we have demonstrated that clubbing problems into operational, tactical and strategic and matching them with tightly pre-scheduled, moderately pre-scheduled and unscheduled systems is a good workable approach which reduces the number of models needed to study different terminal related problems.
Resumo:
Development of Malayalam speech recognition system is in its infancy stage; although many works have been done in other Indian languages. In this paper we present the first work on speaker independent Malayalam isolated speech recognizer based on PLP (Perceptual Linear Predictive) Cepstral Coefficient and Hidden Markov Model (HMM). The performance of the developed system has been evaluated with different number of states of HMM (Hidden Markov Model). The system is trained with 21 male and female speakers in the age group ranging from 19 to 41 years. The system obtained an accuracy of 99.5% with the unseen data
Resumo:
Malayalam is one of the 22 scheduled languages in India with more than 130 million speakers. This paper presents a report on the development of a speaker independent, continuous transcription system for Malayalam. The system employs Hidden Markov Model (HMM) for acoustic modeling and Mel Frequency Cepstral Coefficient (MFCC) for feature extraction. It is trained with 21 male and female speakers in the age group ranging from 20 to 40 years. The system obtained a word recognition accuracy of 87.4% and a sentence recognition accuracy of 84%, when tested with a set of continuous speech data.
Resumo:
Digit speech recognition is important in many applications such as automatic data entry, PIN entry, voice dialing telephone, automated banking system, etc. This paper presents speaker independent speech recognition system for Malayalam digits. The system employs Mel frequency cepstrum coefficient (MFCC) as feature for signal processing and Hidden Markov model (HMM) for recognition. The system is trained with 21 male and female voices in the age group of 20 to 40 years and there was 98.5% word recognition accuracy (94.8% sentence recognition accuracy) on a test set of continuous digit recognition task.
Resumo:
A connected digit speech recognition is important in many applications such as automated banking system, catalogue-dialing, automatic data entry, automated banking system, etc. This paper presents an optimum speaker-independent connected digit recognizer forMalayalam language. The system employs Perceptual Linear Predictive (PLP) cepstral coefficient for speech parameterization and continuous density Hidden Markov Model (HMM) in the recognition process. Viterbi algorithm is used for decoding. The training data base has the utterance of 21 speakers from the age group of 20 to 40 years and the sound is recorded in the normal office environment where each speaker is asked to read 20 set of continuous digits. The system obtained an accuracy of 99.5 % with the unseen data.
Resumo:
A primary medium for the human beings to communicate through language is Speech. Automatic Speech Recognition is wide spread today. Recognizing single digits is vital to a number of applications such as voice dialling of telephone numbers, automatic data entry, credit card entry, PIN (personal identification number) entry, entry of access codes for transactions, etc. In this paper we present a comparative study of SVM (Support Vector Machine) and HMM (Hidden Markov Model) to recognize and identify the digits used in Malayalam speech.
Resumo:
This paper presents the results from an experimental program and an analytical assessment of the influence of addition of fibers on mechanical properties of concrete. Models derived based on the regression analysis of 60 test data for various mechanical properties of steel fiber-reinforced concrete have been presented. The various strength properties studied are cube and cylinder compressive strength, split tensile strength, modulus of rupture and postcracking performance, modulus of elasticity, Poisson’s ratio, and strain corresponding to peak compressive stress. The variables considered are grade of concrete, namely, normal strength 35 MPa , moderately high strength 65 MPa , and high-strength concrete 85 MPa , and the volume fraction of the fiber Vf =0.0, 0.5, 1.0, and 1.5% . The strength of steel fiber-reinforced concrete predicted using the proposed models have been compared with the test data from the present study and with various other test data reported in the literature. The proposed model predicted the test data quite accurately. The study indicates that the fiber matrix interaction contributes significantly to enhancement of mechanical properties caused by the introduction of fibers, which is at variance with both existing models and formulations based on the law of mixtures