1 resultado para Model-Data Integration and Data Assimilation
em Cochin University of Science
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (14)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (13)
- Aston University Research Archive (38)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (24)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (49)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CentAUR: Central Archive University of Reading - UK (254)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (29)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (49)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (5)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons at Florida International University (10)
- Digital Peer Publishing (4)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (35)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (1)
- Earth Simulator Research Results Repository (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Institute of Public Health in Ireland, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (10)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (7)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (39)
- QSpace: Queen's University - Canada (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- RepoCLACAI - Consorcio Latinoamericano Contra el Aborto Inseguro (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (11)
- Repositório digital da Fundação Getúlio Vargas - FGV (10)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (32)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (17)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (10)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (10)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (32)
- Universidade Complutense de Madrid (4)
- Universidade do Minho (10)
- Universidade dos Açores - Portugal (2)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (50)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (2)
- University of Michigan (22)
- University of Queensland eSpace - Australia (31)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This thesis Entitled “modelling and analysis of recurrent event data with multiple causes.Survival data is a term used for describing data that measures the time to occurrence of an event.In survival studies, the time to occurrence of an event is generally referred to as lifetime.Recurrent event data are commonly encountered in longitudinal studies when individuals are followed to observe the repeated occurrences of certain events. In many practical situations, individuals under study are exposed to the failure due to more than one causes and the eventual failure can be attributed to exactly one of these causes.The proposed model was useful in real life situations to study the effect of covariates on recurrences of certain events due to different causes.In Chapter 3, an additive hazards model for gap time distributions of recurrent event data with multiple causes was introduced. The parameter estimation and asymptotic properties were discussed .In Chapter 4, a shared frailty model for the analysis of bivariate competing risks data was presented and the estimation procedures for shared gamma frailty model, without covariates and with covariates, using EM algorithm were discussed. In Chapter 6, two nonparametric estimators for bivariate survivor function of paired recurrent event data were developed. The asymptotic properties of the estimators were studied. The proposed estimators were applied to a real life data set. Simulation studies were carried out to find the efficiency of the proposed estimators.