4 resultados para Missing values structures

em Cochin University of Science


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Learning disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 10% of children enrolled in schools. There is no cure for learning disabilities and they are lifelong. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Just as there are many different types of LDs, there are a variety of tests that may be done to pinpoint the problem The information gained from an evaluation is crucial for finding out how the parents and the school authorities can provide the best possible learning environment for child. This paper proposes a new approach in artificial neural network (ANN) for identifying LD in children at early stages so as to solve the problems faced by them and to get the benefits to the students, their parents and school authorities. In this study, we propose a closest fit algorithm data preprocessing with ANN classification to handle missing attribute values. This algorithm imputes the missing values in the preprocessing stage. Ignoring of missing attribute values is a common trend in all classifying algorithms. But, in this paper, we use an algorithm in a systematic approach for classification, which gives a satisfactory result in the prediction of LD. It acts as a tool for predicting the LD accurately, and good information of the child is made available to the concerned

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Learning Disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 15 % of children enrolled in schools. The prediction of LD is a vital and intricate job. The aim of this paper is to design an effective and powerful tool, using the two intelligent methods viz., Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, for measuring the percentage of LD that affected in school-age children. In this study, we are proposing some soft computing methods in data preprocessing for improving the accuracy of the tool as well as the classifier. The data preprocessing is performed through Principal Component Analysis for attribute reduction and closest fit algorithm is used for imputing missing values. The main idea in developing the LD prediction tool is not only to predict the LD present in children but also to measure its percentage along with its class like low or minor or major. The system is implemented in Mathworks Software MatLab 7.10. The results obtained from this study have illustrated that the designed prediction system or tool is capable of measuring the LD effectively

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Warships are generally sleek, slender with V shaped sections and block coefficient below 0.5, compared to fuller forms and higher values for commercial ships. They normally operate in the higher Froude number regime, and the hydrodynamic design is primarily aimed at achieving higher speeds with the minimum power. Therefore the structural design and analysis methods are different from those for commercial ships. Certain design guidelines have been given in documents like Naval Engineering Standards and one of the new developments in this regard is the introduction of classification society rules for the design of warships.The marine environment imposes subjective and objective uncertainties on ship structure. The uncertainties in loads, material properties etc.,. make reliable predictions of ship structural response a difficult task. Strength, stiffness and durability criteria for warship structures can be established by investigations on elastic analysis, ultimate strength analysis and reliability analysis. For analysis of complicated warship structures, special means and valid approximations are required.Preliminary structural design of a frigate size ship has been carried out . A finite element model of the hold model, representative of the complexities in the geometric configuration has been created using the finite element software NISA. Two other models representing the geometry to a limited extent also have been created —- one with two transverse frames and the attached plating alongwith the longitudinal members and the other representing the plating and longitudinal stiffeners between two transverse frames. Linear static analysis of the three models have been carried out and each one with three different boundary conditions. The structural responses have been checked for deflections and stresses against the permissible values. The structure has been found adequate in all the cases. The stresses and deflections predicted by the frame model are comparable with those of the hold model. But no such comparison has been realized for the interstiffener plating model with the other two models.Progressive collapse analyses of the models have been conducted for the three boundary conditions, considering geometric nonlinearity and then combined geometric and material nonlinearity for the hold and the frame models. von Mises — lllyushin yield criteria with elastic-perfectly plastic stress-strain curve has been chosen. ln each case, P-Delta curves have been generated and the ultimate load causing failure (ultimate load factor) has been identified as a multiple of the design load specified by NES.Reliability analysis of the hull module under combined geometric and material nonlinearities have been conducted. The Young's Modulus and the shell thickness have been chosen as the variables. Randomly generated values have been used in the analysis. First Order Second Moment has been used to predict the reliability index and thereafter, the probability of failure. The values have been compared against standard values published in literature.