6 resultados para Minorities comprising various groups
em Cochin University of Science
Resumo:
This thesis entitled “ Educational rights of the minorities under article 30 of the indian constitution.The study is divided into nine chapters.The object of the present study is to explore whether the judiciary has been successful in balancing the conflicting rights of the minorities and the state. The study also seeks to bring forth those judicial principles which have governed the operation of these rights and determined the limits of their application. Article 30 confers a special right on minorities to establish educational institutions of their own choice.This is an expression of the liberal and tolerent culture of our nation which is reflected in the Constitution. The idea is to foster unity' in diversity, ea unique characteristic of the Indian way of life.This study suggested that where a minority is a minority’ in the historical or national context and its claim is based on religion it must be defined and ascertained in terms of the population of the whole country irrespective of its being a numerical majority' in any particular State and the minority status. of linguistic group has to be ascertained in terms of the population of any particular State irrespective of its being a numerical minority in terms of the population of the whole country.A religious denomination also can be treated as a religion within the meaning of Article 30(1) provided it is having a separate organisation with doctrines and tenets and rites and practices of its own.
Resumo:
Organisational commitment of various groups of professionals seems to be moderated by the differences of the groups as well as of the socialisation experiences Demographic variable ‘age’ and the semi-structural variable ‘experience’ cause a difference in the level of commitment. Similarly, the professional and organisational differences moderate the level of commitment. From the point of view of the organisations, the socialisation experiences if differ can be used as tool to process and enhance the level of commitment of professionals of various groups.The ‘Socialisation effect’ does not depend on the professional or demographic differences. Socialisation level is moderated only by the organisational specialities. It is purely an organisational variable. However, the difference in the socialisation levels as found among the professionals can cause a significant difference in the levels of organisational commitment of professionals
Resumo:
Composition and distribution of various groups and species of zooplankton at Kavaratti, Agatti and Suhelipar atolls of the Lakshadweep group of islands are reported . Higher biomass and diversity occur in the sea surrounding atolls compared to lagoons . Copepoda forms the dominant component of zooplankton . Zooplankton washed across the reef into the lagoon may be serving as food to the reef community . No fauna endemic to lagoons are encountered.
Resumo:
The estuaries are highly productive ecosystems and characteristically are more productive than the adjacent river or sea. Estuarine producers which include planktonic algae, periphyton, herpobenthos as well as macrophytes are capable of nearly year round photosynthesis. Productivity of an environment is mainly the contribution of various groups of autotrophic flora. Any quantitative estimation excluding any one of these would be an underestimation. Periphyton plays a very important role in the productivity of estuarine and coastal waters. It has been reported that periphytic algae attain high biomass (Moss, 1968; Hansson, 1988a) and may contribute up to 80% of the primary production (Persson gt gtt, 1977); Considerable amount of work has been done on the productivity in Cochin backwaters by different investigators (Qasim, 1973, 1979; Nair gt gtt, 1975; Gopi— nathan gt gtt, 1984). All of them have estimated the primary production based only on phytoplankton of the estuary. Considering the contribution of other autotrophic components of the estuary such as periphyton (haptobenthos), sediment flora (herpebenthos) and macropytes, the productivity estimated by earlier authors were essentially underestimations. The present work is an attempt inter glig to assess the contribution of periphytic flora towards the total organic production in the estuary
Resumo:
The focus of this study is the stress of women entrepreneurs.As stress is associated with constraints and demands, and as a set of emerging conditions seem to affect the quality of life of women, it is more than just an occasional need to enquire in to the possibilities of promoting entrepreneurship by empowering women.As women entrepreneurs are increasingly involved in inherently complicated activities of improving their enterprise functioning ,it would be appropriate for women entrepreneurs to focus on transformational coping interventions.The study is limited to women entrepreneurs in the tiny sector.Women entrepreneurs registered in the Distric Industries ( DIC) and in the Kerala State Women’s Industries Association (KSWIA) are only selected for the study.It gaves a detailed description about empowerment of women.The social , economic ,political,ecological,and psychological importance of the study are detailed.It explains the family related stress, and the contextual system.This study is suggested on beliefs and values of women about their self-perception influencing gender bias, which contribute to stress and coping.This study is also needed about women’s believes and expectations about the probable effectiveness of various course of action and their ability to perform those actions.It is also neede for appraising coping potential of women and enhancing their stress base.It is important to research on stress and self-concept
Resumo:
This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.