4 resultados para Mesh generation from image data

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge discovery in databases is the non-trivial process of identifying valid, novel potentially useful and ultimately understandable patterns from data. The term Data mining refers to the process which does the exploratory analysis on the data and builds some model on the data. To infer patterns from data, data mining involves different approaches like association rule mining, classification techniques or clustering techniques. Among the many data mining techniques, clustering plays a major role, since it helps to group the related data for assessing properties and drawing conclusions. Most of the clustering algorithms act on a dataset with uniform format, since the similarity or dissimilarity between the data points is a significant factor in finding out the clusters. If a dataset consists of mixed attributes, i.e. a combination of numerical and categorical variables, a preferred approach is to convert different formats into a uniform format. The research study explores the various techniques to convert the mixed data sets to a numerical equivalent, so as to make it equipped for applying the statistical and similar algorithms. The results of clustering mixed category data after conversion to numeric data type have been demonstrated using a crime data set. The thesis also proposes an extension to the well known algorithm for handling mixed data types, to deal with data sets having only categorical data. The proposed conversion has been validated on a data set corresponding to breast cancer. Moreover, another issue with the clustering process is the visualization of output. Different geometric techniques like scatter plot, or projection plots are available, but none of the techniques display the result projecting the whole database but rather demonstrate attribute-pair wise analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopic studies of laser -induced plasma from a high-temperature superconducting material, viz., YBa2Cu3O7 (YBCO), have been carried out. Electron temperature and electron density measurements were made from spectral data. The Stark broad ening of emission lines was used to determine the electron density, and the ratio of line in tensities was exploited for the determination of electron temperature. An initial electron temperature of 2.35 eV and electron density of 2.5 3 1017 cm2 3 were observed. The dependence on electron temperature and density on different experimental parameters such as distance from the target, delay time after the in itiation of the plasm a, and laser irradiance is also discussed in detail. Index Headings: Laser -plasma spectroscopy; Plasma diagnostics; Emission spectroscop y; YBa2Cu3O7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining is one of the hottest research areas nowadays as it has got wide variety of applications in common man’s life to make the world a better place to live. It is all about finding interesting hidden patterns in a huge history data base. As an example, from a sales data base, one can find an interesting pattern like “people who buy magazines tend to buy news papers also” using data mining. Now in the sales point of view the advantage is that one can place these things together in the shop to increase sales. In this research work, data mining is effectively applied to a domain called placement chance prediction, since taking wise career decision is so crucial for anybody for sure. In India technical manpower analysis is carried out by an organization named National Technical Manpower Information System (NTMIS), established in 1983-84 by India's Ministry of Education & Culture. The NTMIS comprises of a lead centre in the IAMR, New Delhi, and 21 nodal centres located at different parts of the country. The Kerala State Nodal Centre is located at Cochin University of Science and Technology. In Nodal Centre, they collect placement information by sending postal questionnaire to passed out students on a regular basis. From this raw data available in the nodal centre, a history data base was prepared. Each record in this data base includes entrance rank ranges, reservation, Sector, Sex, and a particular engineering. From each such combination of attributes from the history data base of student records, corresponding placement chances is computed and stored in the history data base. From this data, various popular data mining models are built and tested. These models can be used to predict the most suitable branch for a particular new student with one of the above combination of criteria. Also a detailed performance comparison of the various data mining models is done.This research work proposes to use a combination of data mining models namely a hybrid stacking ensemble for better predictions. A strategy to predict the overall absorption rate for various branches as well as the time it takes for all the students of a particular branch to get placed etc are also proposed. Finally, this research work puts forward a new data mining algorithm namely C 4.5 * stat for numeric data sets which has been proved to have competent accuracy over standard benchmarking data sets called UCI data sets. It also proposes an optimization strategy called parameter tuning to improve the standard C 4.5 algorithm. As a summary this research work passes through all four dimensions for a typical data mining research work, namely application to a domain, development of classifier models, optimization and ensemble methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing fishing pressure in coastal waters is the need of the day in the Indian marine fisheries sector of the country which is fast changing from a mere vocational activity to a capital intensive industry. It requires continuous monitoring of the resource exploitation through a scientifically acceptable methodology, data on production of each species stock, the number and characteristics of the fishing gears of the fleet, various biological characteristics of each stock, the impact of fishing on the environment and the role of fishery—independent on availability and abundance. Besides this, there are issues relating to capabilities in stock assessment, taxonomy research, biodiversity, conservation and fisheries management. Generation of reliable data base over a fixed time frame, their analysis and interpretation are necessary before drawing conclusions on the stock size, maximum sustainable yield, maximum economic yield and to further implement various fishing regulatory measures. India being a signatory to several treaties and conventions, is obliged to carry out assessments of the exploited stocks and manage them at sustainable levels. Besides, the nation is bound by its obligation of protein food security to people and livelihood security to those engaged in marine fishing related activities. Also, there are regional variabilities in fishing technology and fishery resources. All these make it mandatory for India to continue and strengthen its marine capture fisheries research in general and deep sea fisheries in particular. Against this background, an attempt is made to strengthen the deep sea fish biodiversity and also to generate data on the distribution, abundance, catch per unit effort of fishery resources available beyond 200 m in the EEZ of southwest coast ofIndia and also unravel some of the aspects of life history traits of potentially important non conventional fish species inhabiting in the depth beyond 200 m. This study was carried out as part of the Project on Stock Assessment and Biology of Deep Sea Fishes of Indian EEZ (MoES, Govt. of India).