5 resultados para Memory-based

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooperative caching in mobile ad hoc networks aims at improving the efficiency of information access by reducing access latency and bandwidth usage. Cache replacement policy plays a vital role in improving the performance of a cache in a mobile node since it has limited memory. In this paper we propose a new key based cache replacement policy called E-LRU for cooperative caching in ad hoc networks. The proposed scheme for replacement considers the time interval between the recent references, size and consistency as key factors for replacement. Simulation study shows that the proposed replacement policy can significantly improve the cache performance in terms of cache hit ratio and query delay

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metglas 2826 MB having a nominal composition of Fe40Ni38Mo4B18 is an excellent soft magnetic material and finds application in sensors and memory heads. However, the thin-film forms of Fe40Ni38Mo4B18 are seldom studied, although they are important in micro-electro-mechanical systems/nano-electromechanical systems devices. The stoichiometry of the film plays a vital role in determining the structural and magnetic properties of Fe40Ni38Mo4B18 thin films: retaining the composition in thin films is a challenge. Thin films of 52 nm thickness were fabricated by RF sputtering technique on silicon substrate from a target of nominal composition of Fe40Ni38Mo4B18. The films were annealed at temperatures of 400 °C and 600 °C. The micro-structural studies of films using glancing x-ray diffractometer (GXRD) and transmission electron microscope (TEM) revealed that pristine films are crystalline with (FeNiMo)23B6 phase. Atomic force microscope (AFM) images were subjected to power spectral density analysis to understand the probable surface evolution mechanism during sputtering and annealing. X-ray photoelectron spectroscopy (XPS) was employed to determine the film composition. The sluggish growth of crystallites with annealing is attributed to the presence of molybdenum in the thin film. The observed changes in magnetic properties were correlated with annealing induced structural, compositional and morphological changes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer treatment is most effective when it is detected early and the progress in treatment will be closely related to the ability to reduce the proportion of misses in the cancer detection task. The effectiveness of algorithms for detecting cancers can be greatly increased if these algorithms work synergistically with those for characterizing normal mammograms. This research work combines computerized image analysis techniques and neural networks to separate out some fraction of the normal mammograms with extremely high reliability, based on normal tissue identification and removal. The presence of clustered microcalcifications is one of the most important and sometimes the only sign of cancer on a mammogram. 60% to 70% of non-palpable breast carcinoma demonstrates microcalcifications on mammograms [44], [45], [46].WT based techniques are applied on the remaining mammograms, those are obviously abnormal, to detect possible microcalcifications. The goal of this work is to improve the detection performance and throughput of screening-mammography, thus providing a ‘second opinion ‘ to the radiologists. The state-of- the- art DWT computation algorithms are not suitable for practical applications with memory and delay constraints, as it is not a block transfonn. Hence in this work, the development of a Block DWT (BDWT) computational structure having low processing memory requirement has also been taken up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bank switching in embedded processors having partitioned memory architecture results in code size as well as run time overhead. An algorithm and its application to assist the compiler in eliminating the redundant bank switching codes introduced and deciding the optimum data allocation to banked memory is presented in this work. A relation matrix formed for the memory bank state transition corresponding to each bank selection instruction is used for the detection of redundant codes. Data allocation to memory is done by considering all possible permutation of memory banks and combination of data. The compiler output corresponding to each data mapping scheme is subjected to a static machine code analysis which identifies the one with minimum number of bank switching codes. Even though the method is compiler independent, the algorithm utilizes certain architectural features of the target processor. A prototype based on PIC 16F87X microcontrollers is described. This method scales well into larger number of memory blocks and other architectures so that high performance compilers can integrate this technique for efficient code generation. The technique is illustrated with an example

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis explores the area of still image compression. The image compression techniques can be broadly classified into lossless and lossy compression. The most common lossy compression techniques are based on Transform coding, Vector Quantization and Fractals. Transform coding is the simplest of the above and generally employs reversible transforms like, DCT, DWT, etc. Mapped Real Transform (MRT) is an evolving integer transform, based on real additions alone. The present research work aims at developing new image compression techniques based on MRT. Most of the transform coding techniques employ fixed block size image segmentation, usually 8×8. Hence, a fixed block size transform coding is implemented using MRT and the merits and demerits are analyzed for both 8×8 and 4×4 blocks. The N2 unique MRT coefficients, for each block, are computed using templates. Considering the merits and demerits of fixed block size transform coding techniques, a hybrid form of these techniques is implemented to improve the performance of compression. The performance of the hybrid coder is found to be better compared to the fixed block size coders. Thus, if the block size is made adaptive, the performance can be further improved. In adaptive block size coding, the block size may vary from the size of the image to 2×2. Hence, the computation of MRT using templates is impractical due to memory requirements. So, an adaptive transform coder based on Unique MRT (UMRT), a compact form of MRT, is implemented to get better performance in terms of PSNR and HVS The suitability of MRT in vector quantization of images is then experimented. The UMRT based Classified Vector Quantization (CVQ) is implemented subsequently. The edges in the images are identified and classified by employing a UMRT based criteria. Based on the above experiments, a new technique named “MRT based Adaptive Transform Coder with Classified Vector Quantization (MATC-CVQ)”is developed. Its performance is evaluated and compared against existing techniques. A comparison with standard JPEG & the well-known Shapiro’s Embedded Zero-tree Wavelet (EZW) is done and found that the proposed technique gives better performance for majority of images