6 resultados para Maximilian I, Elector of Bavaria, 1573-1651.
em Cochin University of Science
Resumo:
The present study describes that acetylcholine through muscarinic Ml and M3 receptors play an important role in the brain function during diabetes as a function of age. Cholinergic activity as indicated by acetylcholine esterase, a marker for cholinergic function, decreased in the brain regions - the cerebral cortex, brainstem and corpus striatum of old rats compared to young rats. in diabetic condition, it was increased in both young and old rats in cerebral cortex, and corpus striatum while in brainstem it was decreased. The functional changes in the muscarinic receptors were studied in the brain regions and it showed that muscarinic M I receptors of old rats were down regulated in cerebral cortex while in corpus striatum and brainstem it was up regulated. Muscarinic M3 receptors of old rats showed no significant change in cerebral cortex while in corpus striatum and brainstem muscarinic receptors were down regulated. During diabetes, muscarinic M I receptors were down regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were up regulated. In old rats, M I receptors were up regulated in cerebral cortex, corpus striatum and in brainstem they were down regulated. Muscarinic M3 receptors were up regulated in cerebral cortex and brainstem of young rats while in corpus striatum they were down regulated. In old rats, muscarinic M l receptors were up regulated in cerebral cortex, corpus striatum and brainstem. In insulin treated diabetic rats the activity of the receptors were reversed to near control. Pancreatic muscarinic M3 receptor activity increased in the pancreas of both young and old rats during diabetes. In vitro studies using carbachol and antagonists for muscarinic Ml and M3 receptor subtypes confirmed the specific receptor mediated neurotransmitter changes during diabetes. Calcium imaging studies revealed muscarinic M I mediated Ca2 + release from the pancreatic islet cells of young and old rats. Electrophysiological studies using EEG recording in young and old rats showed a brain activity difference during diabetes. Long term low dose STH and INS treated rat brain tissues were used for gene expression of muscarinic Ml, M3, glutamate NMDARl, mGlu-5,alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors to observe the neurotransmitter receptor functional interrelationship for integrating memory, cognition and rejuvenating brain functions in young and old. Studies on neurotransmitter receptor interaction pathways and gene expression regulation by second messengers like IP3 and cGMP in turn will lead to the development of therapeutic agents to manage diabetes and brain activity.From this study it is suggested that functional improvement of muscarinic Ml, M3, glutamate NMDAR1, mGlu-5, alpha2A, beta2, GABAAa1 and GABAB, DAD2 and 5-HT 2C receptors mediated through IP3 and cGMP will lead to therapeutic applications in the management of diabetes. Also, our results from long term low dose STH and INS treatment showed rejuvenation of the brain function which has clinical significance in maintaining healthy period of life as a function of age.
Resumo:
Most of the procedures reported for the synthesis of metal nanoparticles involve the use of strong reducing agents or elevated temperatures. This limits the possibility of developing metal nanoparticle based sensors for the in situ detection of analytes. One of the objectives of the present investigations is to (i) develop newer methodologies for the synthesis of metal nanoparticles in aqueous medium at ambient conditions and (ii) their use in the detection of metal cations by taking advantage of the unique coordination ability. Ideally, biocompatible molecules which possess both the reducing and stabilizing groups are desirable for such applications. Formation of stable supramolecular assembly, by bringing metal nanoparticles close to each other, results in plasmon coupling and this strategy can be effectively utilized for the development of metal nanoparticle based sensors.Another objective of the present study is to understand the supramolecular organization of molecules on surfaces. Various noncovalent interactions between the molecules and with surface play a decisive role in their organizations. An in-depth understanding of these interactions is essential for device fabrications. Recent photophysical studies have revealed that phenyleneethynylene based molecular systems are ideal for device application. The second objective of the thesis focuses on understanding the (i) organization of phenyleneethynylenes on highly oriented pyrolytic graphite (HOPG) surface with atomic level precision and (ii) weak intermolecular interactions which drive their organization.
Resumo:
This thesis is an attempt to Provenence, Sedimentetion and Geochemistry of the Modern Sediments of the Mud Banks off the Central Kerela Coast, India. In the present doctoral work, an attempt has been made to study in detail the mud banks of central Kerala, i.e. of Narakkal, Saudi and Purakkad areas which are reported as permanent mud banks, since olden days. The studies have been conducted during the years 1985 and 1986. The important findings of the study is stated as clay mineralogical studies of the rivers, lake and mud bank sediments reveal that the dominant clay mineral is kaolinite followed by montmorillonite, illite and gibbsite. Geochemical analysis of the Vembanad lake and mud bank sediments show that the iron and manganese are widely distributed both in the lake and mud bank sediments
Resumo:
The present work "Nature and Ecological Significance of Nutrient Regeneration in different Prawn Culture Fields" was undertaken to understand the seasonal variation of nutrients, nutrient cycling and primary productivity of the prawn culture systems. The main emphasis was to find the qualitative and quantitative estimates of distribution of total phosphorus, inorganic phosphorus, organic phosphorus, total nitrogen and nitrogen fractions in the water. The effect of nutrient cycling on primary productivity and concentration of metals also form one part of the study. The entire thesis comprise of only one major chapter with subchapters such as, Introduction (I), Review of Literature (2), Material and Methods (3), Results (14), Discussion (5), Executive Summary (6) and Biblio~ graphy (7)
Resumo:
Cattle feed industry is a major segment of animal feed industry. This industry is gradually evolving into an organized sector and the feed manufactures are increasingly using modern and sophisticated methods that seek to incorporate best global practices. This industry has got high potential for growth in India, given the fact that the country is the world’s leading producer of milk and its production is expected to grow at a compounded annual growth rate of 4 per cent. Besides, the concept of branded cattle feed as a packaged commodity is fast gaining popularity in rural India. There can be a positive change in the demand for cattle feed because of factors like (i) shrinkage of open land for cattle grazing, urbanization and resultant shortage of conventionally used cattle feeds, and (ii) introduction of high yield cattle requires specialized feeds. Earlier research studies done by the present authors have revealed the significant growth prospects of the branded cattle feed industry, the feed consumption pattern and the relatively high share of branded feeds, feed consumption pattern based on product types (like, pellet and mash), composition of cattle feed market and the relatively large shares of Kerala Feeds Ltd. (KFL) and Kerala Solvent Extractions Ltd. (KSE) brands, the major factors influencing the purchasing decisions etc. As a continuation of the earlier studies, this study makes a closer look into the significance of product types in the buyer behavior, level of awareness about the brand and its implications on purchasing decisions, and the brandshifting behavior and its determinants