7 resultados para Mathematical models. Circadian rhythms. Circadian timing system. Actigraphy

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is devoted to the study of some stochastic models in inventories. An inventory system is a facility at which items of materials are stocked. In order to promote smooth and efficient running of business, and to provide adequate service to the customers, an inventory materials is essential for any enterprise. When uncertainty is present, inventories are used as a protection against risk of stock out. It is advantageous to procure the item before it is needed at a lower marginal cost. Again, by bulk purchasing, the advantage of price discounts can be availed. All these contribute to the formation of inventory. Maintaining inventories is a major expenditure for any organization. For each inventory, the fundamental question is how much new stock should be ordered and when should the orders are replaced. In the present study, considered several models for single and two commodity stochastic inventory problems. The thesis discusses two models. In the first model, examined the case in which the time elapsed between two consecutive demand points are independent and identically distributed with common distribution function F(.) with mean  (assumed finite) and in which demand magnitude depends only on the time elapsed since the previous demand epoch. The time between disasters has an exponential distribution with parameter . In Model II, the inter arrival time of disasters have general distribution (F.) with mean  ( ) and the quantity destructed depends on the time elapsed between disasters. Demands form compound poison processes with inter arrival times of demands having mean 1/. It deals with linearly correlated bulk demand two Commodity inventory problem, where each arrival demands a random number of items of each commodity C1 and C2, the maximum quantity demanded being a (< S1) and b(

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a study of discrete nonlinear systems represented by one dimensional mappings.As one dimensional interative maps represent Poincarre sections of higher dimensional flows,they offer a convenient means to understand the dynamical evolution of many physical systems.It highlighting the basic ideas of deterministic chaos.Qualitative and quantitative measures for the detection and characterization of chaos in nonlinear systems are discussed.Some simple mathematical models exhibiting chaos are presented.The bifurcation scenario and the possible routes to chaos are explained.It present the results of the numerical computational of the Lyapunov exponents (λ) of one dimensional maps.This thesis focuses on the results obtained by our investigations on combinations maps,scaling behaviour of the Lyapunov characteristic exponents of one dimensional maps and the nature of bifurcations in a discontinous logistic map.It gives a review of the major routes to chaos in dissipative systems,namely, Period-doubling ,Intermittency and Crises.This study gives a theoretical understanding of the route to chaos in discontinous systems.A detailed analysis of the dynamics of a discontinous logistic map is carried out, both analytically and numerically ,to understand the route it follows to chaos.The present analysis deals only with the case of the discontinuity parameter applied to the right half of the interval of mapping.A detailed analysis for the n –furcations of various periodicities can be made and a more general theory for the map with discontinuities applied at different positions can be on a similar footing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of axiswise measurements of the electrical conductivity (dc and ac) and dielectric constant of NH4H2PO4 confirm the occurrence of the recently suggested high‐temperature phase transition in this crystal (at 133 °C). The corresponding transition in ND4D2PO4 observed here for the first time takes place at 141.5 °C. The mechanism involved in these transitions and those associated with the electrical conduction and dielectric anomalies are explained on the basis of the motional effects of the ammonium ions in these crystals. Conductivity values for deuterated crystals give direct evidence for the predominance of protonic conduction throughout the entire range of temperatures studied (30–260 °C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. Even mathematicians like H. Poincare worried about this. He observed that mathematical models are over idealizations, for instance, he said that only in Mathematics, equality is a transitive relation. A first attempt to save this situation was perhaps given by K. Menger in 1951 by introducing the concept of statistical metric space in which the distance between points is a probability distribution on the set of nonnegative real numbers rather than a mere nonnegative real number. Other attempts were made by M.J. Frank, U. Hbhle, B. Schweizer, A. Sklar and others. An aspect in common to all these approaches is that they model impreciseness in a probabilistic manner. They are not able to deal with situations in which impreciseness is not apparently of a probabilistic nature. This thesis is confined to introducing and developing a theory of fuzzy semi inner product spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deteriorating air quality especially in urban environments is a cause of serious concern. In spite of being an effective sink, the atmosphere also has its own limitations in effectively dispersing the pollutants being dumped into it continuously by various sources, mainly industries. Many a time, it is not the higher emissions that cause alarming level of pollutants but the unfavourable atmospheric conditions under which the atmosphere is not able to disperse them effectively, leading to accumulation of pollutants near the ground. Hence, it is imperative to have an estimate of the atmospheric potential for dispersal of the substances emitted into it. This requires a knowledge of mixing height, ventilation coefficient, wind and stability of the region under study. Mere estimation of such pollution potential is not adequate, unless the probable distribution of concentration of pollutants is known. This can be obtained by means of mathematical models. The pollution potential coupled with the distribution of concentration provides a good basis for initiating steps to mitigate air pollution in any developing urban area. In this thesis, a fast developing industrial city, namely, Trivandrum is chosen for estimating the pollution potential and determining the spatial distribution of sulphur dioxide concentration. Each of the parameters required for pollution potential is discussed in detail separately. The thesis is divided into nine chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. The 1st chapter give a brief summary of the arithmetic of fuzzy real numbers and the fuzzy normed algebra M(I). Also we explain a few preliminary definitions and results required in the later chapters. Fuzzy real numbers are introduced by Hutton,B [HU] and Rodabaugh, S.E[ROD]. Our definition slightly differs from this with an additional minor restriction. The definition of Clementina Felbin [CL1] is entirely different. The notations of [HU]and [M;Y] are retained inspite of the slight difference in the concept.the 3rd chapter In this chapter using the completion M'(I) of M(I) we give a fuzzy extension of real Hahn-Banch theorem. Some consequences of this extension are obtained. The idea of real fuzzy linear functional on fuzzy normed linear space is introduced. Some of its properties are studied. In the complex case we get only a slightly weaker analogue for the Hahn-Banch theorem, than the one [B;N] in the crisp case

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on pulse propagation in single mode optical fibers have attracted interest from a wide area of science and technology as they have laid down the foundation for an in-depth understanding of the underlying physical principles, especially in the field of optical telecommunications. The foremost among them is discovery of the optical soliton which is considered to be one of the most significant events of the twentieth century owing to its fantastic ability to propagate undistorted over long distances and to remain unaflected after collision with each other. To exploit the important propertia of optical solitons, innovative mathematical models which take into account proper physical properties of the single mode optical fibers demand special attention. This thesis contains a theoretical analysis of the studies on soliton pulse propagation in single mode optical fibers.