7 resultados para Mathacrylate-based resin

em Cochin University of Science


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research project aims at developing new applications for CNSL in the polymer field. Cashew nut shell liquid (CNSL) is a cheap agro-byproduct and renewable resource which consists mainly of substituted phenols. By using CNSL in place of phenol, phenol derived from petrochemicals can be conserved and a cheap agro-byproduct utilized.In this study CNSL based resin is prepared by condensing a mixture of phenol and CNSL with hexamethylenetetramine and the effect of P: F ratio and CNSL: P ratio on the properties of synthesized resin is studied. The adhesive properties of CNSL based resin in combination with neoprene rubber are investigated. The effect of varying the stoichiometric ratios between total phenol and formaldehyde and CNSL and phenol of the resin, resin content, choice and extent of fillers and adhesion promoters in the adhesive formulation are studied. The effect of resin on the ageing properties of various elastomers is also studied by following changes in tensile strength, elongation at break, modulus, tear strength, swelling index and acetone soluble matter. Crude CNSL and resins with different P: F ratios and CNSL: P ratios are incorporated into elastomers. Lastly, utility of CNSL based resin as binder for making particleboard is investigated.The results show that CNSL based resin is an effective ingredient in adhesives for bonding aluminium to aluminium. The resin used for adhesive fonnulation gives the best performance at 45 to 55 phr resin and a total phenol: formaldehyde of l:2.9. The resin when added at a rate of l5 phr improves ageing characteristics of elastomers with respect to mechanical properties. The reaction mixture of CNSL and hexa and the resin resulting from the condensation of CN SL, phenol and hexa can be used as effective binders for moulding particleboard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In natural rubber/high styrene resin microcellular sheets, part of natural rubber was replaced by latex reclaim prepared from waste latex products. The mechanical properties and cell structure of the products were evaluated. It was found that latex reclaim can replace about 30% of natural rubber without affecting the technical properties of the microcellular sheets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rheological characteristics of short Nylon-6 fiber-reinforced Styrene Butadiene rubber (SBR) in the presence of epoxy resin-based bonding agent were studied with respect to the effect of shear rate, fiber concentration , and temperature on shear viscosity and die swell using a capillary rheonzeter. All the composites containing bonding agent showed a pseudoplastic nature, which decreased with increasing temperature. Shear viscosity was increased in the presence of fibers. The temperature sensitivity of the SBR matrices was reduced on introduction of fibers. The temperature sensitivity of the melts was found to be lower at higher shear rates. Die swell was reduced in the presence of fibers. Relative viscosity of the composites increased with shear rate. In the presence of epoxy resin bonding agent the temperature sensitivity of the mixes increased. Die swell was larger in the presence of bonding agent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cure characteristics of short polyester fiber-polyurethane composites with respect to different bonding agents (MD resins) based on 4, 4' diphenylmethanediisocyanate (MDI) and various diols like propyleneglycol (PG), polypropyleneglycol (PPG) and glycerol (GL) were studied. Tmax. - Tmin. of composites having MD resin were found to be higher than the composite without MD resin. Minimum torque and Tmax. - Tmin., scorch time and optimum cure time were increased with the increase of MDI equivalence. Optimum ratio of MDI / -of in the resin was found to be within the range of 1-1.5. It was observed from the cure characteristics that for getting better adhesion between short polyester fiber and the polyurethane matrix the best choice of MD resin was one based on MDI and 1:1 equivalent mixture of polypropyleneglycol and glycerol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the investigation is to develop new high performance adhesive systems based on neoprene-phenolic blends. Initially the effect of addition of all possible ingredients like fillers, adhesion promoters, curing agents and their optimum compositions to neoprene solution is investigated. The phenolic resin used is a copolymer of phenol-cardanolformaldehyde prepared in the laboratory. The optimum ratio between phenol and cardanol that gives the maximum bond strength in metal-metal, rubber-rubber and rubber-metal specimens has been identified. Further the ratio between total phenols and formaldehyde is also optimised. The above adhesive system is further modified by the addition of epoxidized phenolic novolacs. For this purpose, phenolic novolac resins are prepared in different stoichiometric ratios and are subsequently epoxidized. The effectiveness of the adhesive for bonding different metal and rubber substrates is another part of the study. To study the ageing behaviour, different bonded specimens are exposed to high temperature, hot water and salt water and adhesive properties have been evaluated. The synthesized resins have been characterized by FTIR , HNMR spectroscopy. The molecular weights of the resins have been obtained by GPC. Thermogravimetric analysis and differential scanning calorimetry are used to study the thermal properties. The fractured surface analysis is studied by scanning electron microscopy. The study has brought to light the influence of phenol/ formaldehyde stoichiometric ratio, addition of cardanol (a renewable resource), adhesion promoters and suitability of the adhesive for different substrates and the age resistance of adhesive joints among other things.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unsaturated polyester resins (UPRs) are extensively used by the fiber-reinforced plastic (FRPs) industry. These resins have the disadvantages of brittleness and poor resistance to crack propagation. In this study, UPRs were chemically modified by reactive blending with polyurethane prepolymers having terminal isocyanate groups. Hybrid networks were formed by copolymerisation of unsaturated polyesters with styrene and simultaneous reaction between terminal hydroxyl groups of unsaturated polyester and isocyanate groups of polyurethane prepolymer. The prepolymers were based on toluene diisocyanate (TDI) and each of hydroxy-terminated natural rubber (HTNR), hydroxy- terminated polybutadiene (HTPB), polyethylene glycol (PEG), and castor oil. Properties like tensile strength, toughness, impact resistance, and elongation-at-break of the modified UPRs show considerable improvement by this modification. The thermal stability of the copolymer is also marginally better

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unsaturated polyester resins (UPRs) are used widely in the fiber-reinforced plastics (FRPs) industry. These resins have the disadvantages of brittleness and poor resistance to crack propagation. In this study, hybrid polymer networks (HPNs) based on UPR and epoxidized phenolic novolacs (EPNs) were prepared by reactive blending. A HPN is composed of a backbone polymer containing two types of reactive groups that can take part in crosslinking reactions via different mechanisms. EPNs were prepared by glycidylation of novolacs using epichlorohydrin. The novolacs had varying phenol: formaldehyde ratios. Blends of unsaturated polyester with EPN were then prepared. The physical properties of the cured blends were compared with those of the control resin. EPN shows good miscibility and compatibility with the resin and improves the toughness and impact resistance substantially. Considerable enhancement of tensile strength is also noticed at about 5% by weight of epoxidized novolac resin. TGA, DMA, and DSC were used to study the thermal properties of the toughened resin and the fracture behavior was studied using SEM. The blends are also found to have better thermal stability. Blending with EPN can be a useful and cost-effective technique for modification of UPR