3 resultados para Market capture, queuing, ant colony optimization

em Cochin University of Science


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.Well developed thin film photovoltaic technologies are based on amorphous silicon, CdTe and CuInSe2. However the cell fabrication process using amorphous silicon requires handling of very toxic gases (like phosphene, silane and borane) and costly technologies for cell fabrication. In the case of other materials too, there are difficulties like maintaining stoichiometry (especially in large area films), alleged environmental hazards and high cost of indium. Hence there is an urgent need for the development of materials that are easy to prepare, eco-friendly and available in abundance. The work presented in this thesis is an attempt towards the development of a cost-effective, eco-friendly material for thin film solar cells using simple economically viable technique. Sn-based window and absorber layers deposited using Chemical Spray Pyrolysis (CSP) technique have been chosen for the purpose

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine yeast have been regarded as safe and showing a beneficial impact on biotechnological process. It provides better nutritional and dietary values indicating their potential application as feed supplements in aquaculture. Brown et al. (1996) evaluated all the marine yeasts characterised with high protein content, carbohydrate, good amino acid composition and high levels of saturated fats. However, there is paucity of information on marine yeasts as feed supplements and no feed formulation has been found either in literature or in market supplemented with them. This statement supported by Zhenming et al. (2006) reported still a lack of feed composed of single cell protein (SCP) from marine yeasts with high content of protein and other nutrients. Recent research has shown that marine yeasts also have highly potential uses in food, feed, medical and biofuel industries as well as marine biotechnology (Chi et al., 2009; 2010). Sajeevan et al. (2006; 2009a) and Sarlin and Philip (2011) demonstrates that the marine yeasts Candida sake served as a high quality, inexpensive nutrient source and it had proven immunostimulatory properties for cultured shrimps. This strain has been made part of the culture collection of National Centre for Aquatic Animal Health, Cochin University of Science and Technology as Candida MCCF 101. Over the years marine yeasts have been gaining increased attention in animal feed industry due to their nutritional value and immune boosting property.Therefore, the present study was undertaken, and focused on the nutritional quality, optimization of large scale production and evaluation of its protective effect on Koi carp from Aeromonas infection

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the early 19th century, industrial revolution was fuelled mainly by the development of machine based manufacturing and the increased use of coal. Later on, the focal point shifted to oil, thanks to the mass-production technology, ease of transport/storage and also the (less) environmental issues in comparison with the coal!! By the dawn of 21st century, due to the depletion of oil reserves and pollution resulting from heavy usage of oil the demand for clean energy was on the rising edge. This ever growing demand has propelled research on photovoltaics which has emerged successful and is currently being looked up to as the only solace for meeting our present day energy requirements. The proven PV technology on commercial scale is based on silicon but the recent boom in the demand for photovoltaic modules has in turn created a shortage in supply of silicon. Also the technology is still not accessible to common man. This has onset the research and development work on moderately efficient, eco-friendly and low cost photovoltaic devices (solar cells). Thin film photovoltaic modules have made a breakthrough entry in the PV market on these grounds. Thin films have the potential to revolutionize the present cost structure of solar cells by eliminating the use of the expensive silicon wafers that alone accounts for above 50% of total module manufacturing cost.