27 resultados para Mangrove vegetation
em Cochin University of Science
Resumo:
The situation in the backwaters of Kerala, which reportedly had about 70,000 ha of mangroves, is unique in the sense that there has been a total conversion to other uses such as paddy cultivation, coconut plantation, aquaculture, harbour development and urban development In order to save and restore what is left over national and international organisations are mounting pressure on scientists and policy makers to work out ways and means conserving and managing the mangrove ecosystems. In this context, it has been observed in recent years that mangrove vegetation has remained intact in isolated pockets of undisturbed areas in the Cochin estuarine system and also that there is resurgence of mangroves in areas of accretion and silting. The candidate took up the present study with a view to make an inventory of the existing mangrove locations, the areas of resurgence, species composition, zonation and other ecological parameters to understand their dynamism and to suggest a mangement plan for this important coastal ecosystem
Resumo:
The water quality and primary productivity of Valanthakad backwater (9° 55 10. 24 N latitude and 76° 20 01. 23 E longitude) was monitored from June to November 2007. Significant spatial and temporal variations in temperature, transparency, salinity, pH, dissolved oxygen, sulphides, carbon dioxide, alkalinity, biochemical oxygen demand, phosphatephosphorus, nitrate-nitrogen, nitrite-nitrogen as well as primary productivity could be observed from the study. Transparency was low (53.75 cm to 159 cm) during the active monsoon months when the intensity of solar radiation was minimum, which together with the run off from the land resulted in turbid waters in the study sites. The salinity in both the stations was low (0.10 ‰ to 4.69 ‰) except in August and November 2007. The presence of total sulphide (0.08 mg/ l to 1.84 mg/ l) and higher carbon dioxide (3 mg/ l to 17 mg/ l) could be due to hospital discharges and decaying slaughter house wastes in Station 1 and also from the mangrove vegetation in Station 2. Nitrate-nitrogen and phosphate-phosphorus depicted higher values and pronounced variations in the monsoon season. Maximum net primary production was seen in November (0.87 gC/ m3/ day) and was reported nil in September. The chlorophyll pigments showed higher values in July, August and November with a negative correlation with phosphate-phosphorus and nitrite-nitrogen. The study indicated that the water quality and productivity of Valanthakad backwater is impacted and is the first report from the region
Resumo:
Department of Marine Biology, Cochin University of Science & Technology
Resumo:
As a result of the issues of care and conservation and sustainable utilisation, the proper management of mangrove forests have become more pressing than ever. Much recent ecological and toxicological debate has been centered around the question of validity of making predictions about the future of mangrove ecosystemas a result of the newly evolved environmental policy. Though muchinformation exist on the biodiversity, floristic composition and characteristics, geographical distribution and uses of mangroves, systematic documentation of the various sedimentological and geochemical phenomena in relation to the mangrove flora are scarce. Hazardous, persistent, man-made chemicals and waste produces are entering the mangrove ecosystem at from the adjacent watersheds which strengthened alarming rates the indispensible need for further researches on the environmental behaviours, fate and the effect of such products. Studies on the effect of heavy metals, pesticides and the other toxic signals through bioassay and toxicity tests on mangrove species as well as in sediments definitely will furnish ample clues to establish the actual operative mechanisms of these environments. A thorough review of literature made in this angle reveals that some attempts have already been initiated the world over the record the physico-chemical characteristics of major abiotic components such as sediments and water of many mangrove ecosystem, however, adequate information is lacking in the Indian Environmental Science scenario. The present investigation is an attempt to record the sedimentological, mineralogical and geochemical characteristics of sediments as well as the heavy metal enrichment in the various species ofmangrove flora of three important mangrove ecosystems of Kerala, located at Veli (SouthKerala), Kochi (Central Kerala) and Kannur (North Kerala). The results of the above investigation have been analysed statistically, discussed based on the available literature and presented in this thesis under seven chapters
Resumo:
In this thesis, the production and characterization of ligninolytic enzymes using the fungi isolated from mangrove area are studied. The objective of the present work are isolation and screening of dye decolorizing micro-organisms from mangrove area, screening of the selected microorganisms for the production of lignin degrading enzymes, identification of the potent micro-organisms, characterization of the crude enzyme, lignin peroxidase, of the selected fungi—Aspergillus sp. SIP 11 and Penicillium sp. SIP 10 etc. This included the determination of the optimum pH, temperature, veratryl alcohol and H2O2 concentration. Besides the stability of crude LiP at different pHs and temperatures were studied. The immense applications, particularly in bioremediation, to which the lignin degrading micro-organisms could be used make this study important, the ascomycetes and deuteromycetes fungi, especially form the marine environment were studied with respect to their ligninolytic enzyme system making this study an initial step in unraveling the vast hidden potential of these microbes in bioremediation, the marine microbes are halophilic in nature which make them better suited to cope with the high salinity of industrial effluents thereby giving them added advantage in the filed of bioremediation. The thesis deals with the isolation and screening of lignin degrading enzyme-producing microbes from mangrove area. The identification of the most potent fungal isolates and characterization of LiP from these are also done.
Resumo:
The mangrove ecosystem is one of the earth’s most endangered ecosystems. In this study, geochemical features of three mangrove ecosystems, Mangalavanam, Vypeen and Nettoor were compared. Water, sediment and core samples were collected from these stations for a period of one year. Nutrients, organic compounds orgnic carbon and hydrographical parameters of the samples were estimated. The present study revealed higher concentration of carbon in the surface sediments. The major temporary or ultimate sink for various pollutants in estuaries is the sedimentary reservoir, including intertidal areas. In the present study, higher values for dissolved nutrients, POC and carbohydrates were observed during low tide.
Resumo:
Mangrove forests are best developed on tropical shorelines where there is an extensive intertidal zone, with an abundant supply of fine-grained sediment. It receives a mixture of liable and refractory organic and inorganic phosphorus compounds from the overlying water and the surrounding landmasses. Organic phosphorus is not available for mangrove plant nutrition. While inorganic phosphate represents the largest potential pool of plant-available and which are bound in the form of Ca, Fe and Al phosphate. It deals with the scientific investigations on mangrove systems in the Kerala coastline and to investigate nutrient distribution of mangrove ecosystems of greater Cochin area. It discusses the description of study areas such as Murikkumpadam-Vypeen Island and Aroor. Then it deals with the spatial and seasonal distribution of dissolved ammonia, nitrite, nitrate, inorganic phosphate, organic phosphate and the total phosphorus in surface waters of mangrove fringed creeks. Then it discusses the geochemical compositions of mangrove-fringed sediments and also the chemical speciation of phosphorus in sediment cores.
Resumo:
Division of Marine Biology, Micrbiology and Biochemistry,Cochin University of Science and Technology
Resumo:
Humic substances are complex polymeric structures.No other polymers with such a wide range of properties are so widely distributed in nature.But still their moleculer structures are unknown. A structural knowledge is essential in determining their reactivity with metals.In the present work structural elucidation of humic acids from three different mangrove ecosystems of Cochin area is done with the available data from functional group analysis and various spectroscopic methods.13C NMR spectra of the solid samples with CPMAS,IR and SEM are very promising in revealing the complex structures of these polymeric substances.Sorptional studies on the sediment and humic acid of mangrove ecosystem reveals that the major portion of the organic matter is not extractable with Sodium hydroxide and humic acid only a small portion of the total organic matter. Humic acid is a good complexing agent and scavenger. Due to the nonextractable nature of the organic matter present with the sediment left after alkali extraction it is a better scavenger.
Resumo:
Sulphur is a non conservative major element and is the most active species in the redox processes in nature, especially in aquatic environment . The varying oxidative states from-2 to +6 make it possible to enter into many of the biogeochemical processes. Thus the history, present and future of the chemical composition and behaviour of the natural aquatic systems and sediments have footprints of the sulphur chemistry.Mangroves are considered to be the most productive, fishery supportive ecosystem operating in the intertidal regions. The interlinking of the mangroves with the sulphur chemistry is attempted here.
Vegetation Mapping and Analysis of Eravikulam National Park of Kerala Using Remote Sensing Technique
Resumo:
Mangrove swamps are unique inter-tidal wetland ecosystems found in sheltered tropical and subtropical shores.Mangrove sediments can be considered as large reservoirs of amino acids,which exist in several different forms,like free amino acids in the sediment micropores,as amino acids,peptides or proteins bound to clay minerals or as amino acids,peptides or proteins bound to humic colloids.Inorder to assess survival conditions of organisms of mangroves,it is important to understand stability of amino acids in the sediments.The amounts of amino acids present in sediment represent a balance between its synthesis and destruction by microorganisms.Thus amino acid analysis offers more insight into the processes of diagenesis,which changes the nature and characteristics of organic matter deposition and decomposition.
Resumo:
Department of Chemical Oceanography,Cochin University of Science and Technology
Resumo:
The biogeochemistry of mangroves are the least understood ecological properties because of their sediment complexicity due to the tidal influx of allochthonous organic matter and the autochthonous inputs.In order to understand the relative importance of biogeochemical processes,it is necessary not only to characterise and qualify the organic matter but also to identify its major sources .The present study is a preliminary investigation to identify the sources of organic matter in three mangrove systems of Cochin Estuary using fatty acid biomarkers,δ13 C of total organic matter,elemental composition and biochemical composition.
Resumo:
The temperate, filamentous phage ФMV -5 isolated from Mangalavanam mangrove of Kochi, using the environmental strain of Vibrio sp. MV-5 shares many similar properties with other marine phage isolates, while also remaining unique. The study has revealed that the interaction of temperate phages and the microbial population in the marine environment may contribute significantly to microbial genetic diversity and composition by conversion and transduction and which requires greater study.Prophages contribute a substantial share of the mobile DNA of their bacterial hosts and seem to influence the short-term evolution of pathogenic bacteria. Automated methods for systematic investigation of prophages and other mobile DNA elements in the available bacterial genome sequences will be necessary to understand their role in bacterial genome evolution. In the past, phages were mainly investigated as the simplest model systems in molecular biology. Now it is increasingly realized that phage research will be instrumental in the understanding of bacterial abundance in the environment. One can predict that phage research will impact diverse areas such as geochemistry and medicine. Success will largely depend on integrative multidisciplinary approaches in this field. Clearly, further studies are required to understand how vibriophages interact with Vibrios to promote this organism's acquisition of the critical genes which alter its virulence or adaptation to its environmental niche.It is evident from this study and comparison with those reports cited above that vibriophage ФMV-5 is a previously unreported bacteriophage. It is recommended that the minimum requirement for reporting a new phage should be novel morphological markers and a description of host range, both of which have been achieved in this study.