4 resultados para Mammography

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common non - skin malignancy in women and a leading cause of female morality. A potentially important strategy for reducing this menace is the detection at an early stage . The invention of non-invasive and non-ionizing microwave technique, to reveal the internal structure of biological objects was a break through in the field of medical diagnostics. Electrical properties of biological tissues and their interaction with electromagmetic waves have direct impact on human life. This thesis focuses on theoretical and experimental investigations of active microwave imaging techniques for breast cancer detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite its recognized value in detecting and characterizing breast disease, X-ray mammography has important limitations that motivate the quest for alternatives to augment the diagnostic tools that are currently available to the radiologist. The rationale for pursuing electromagnetic methods are based on the significant dielectric contrast between normal and cancerous breast tissues, when exposed to microwaves. The present study analyzes two-dimensional microwave tomographic imaging on normal and malignant breast tissue samples extracted by mastectomy, to assess the suitability of the technique for early detection ofbreast cancer. The tissue samples are immersed in matching coupling medium and are illuminated by 3 GHz signal. 2-D tomographic images ofthe breast tissue samples are reconstructed from the collected scattered data using distorted Born iterative method. Variations of dielectric permittivity in breast samples are distinguishable from the obtained permittivity profiles, which is a clear indication of the presence of malignancy. Hence microwave tomographic imaging is proposed as an alternate imaging modality for early detection ofbreast cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After skin cancer, breast cancer accounts for the second greatest number of cancer diagnoses in women. Currently the etiologies of breast cancer are unknown, and there is no generally accepted therapy for preventing it. Therefore, the best way to improve the prognosis for breast cancer is early detection and treatment. Computer aided detection systems (CAD) for detecting masses or micro-calcifications in mammograms have already been used and proven to be a potentially powerful tool , so the radiologists are attracted by the effectiveness of clinical application of CAD systems. Fractal geometry is well suited for describing the complex physiological structures that defy the traditional Euclidean geometry, which is based on smooth shapes. The major contribution of this research include the development of • A new fractal feature to accurately classify mammograms into normal and normal (i)With masses (benign or malignant) (ii) with microcalcifications (benign or malignant) • A novel fast fractal modeling method to identify the presence of microcalcifications by fractal modeling of mammograms and then subtracting the modeled image from the original mammogram. The performances of these methods were evaluated using different standard statistical analysis methods. The results obtained indicate that the developed methods are highly beneficial for assisting radiologists in making diagnostic decisions. The mammograms for the study were obtained from the two online databases namely, MIAS (Mammographic Image Analysis Society) and DDSM (Digital Database for Screening Mammography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cancer treatment is most effective when it is detected early and the progress in treatment will be closely related to the ability to reduce the proportion of misses in the cancer detection task. The effectiveness of algorithms for detecting cancers can be greatly increased if these algorithms work synergistically with those for characterizing normal mammograms. This research work combines computerized image analysis techniques and neural networks to separate out some fraction of the normal mammograms with extremely high reliability, based on normal tissue identification and removal. The presence of clustered microcalcifications is one of the most important and sometimes the only sign of cancer on a mammogram. 60% to 70% of non-palpable breast carcinoma demonstrates microcalcifications on mammograms [44], [45], [46].WT based techniques are applied on the remaining mammograms, those are obviously abnormal, to detect possible microcalcifications. The goal of this work is to improve the detection performance and throughput of screening-mammography, thus providing a ‘second opinion ‘ to the radiologists. The state-of- the- art DWT computation algorithms are not suitable for practical applications with memory and delay constraints, as it is not a block transfonn. Hence in this work, the development of a Block DWT (BDWT) computational structure having low processing memory requirement has also been taken up.