9 resultados para Main chain polymers

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toluene diisocyanate based optically active chiral polyurethanes were synthesized according to the symmetry conditions. The noncentrosymmetric (both charge asymmetry and spatial asymmetry) environment were attained by the incorporation of the chiral units (diethyl-(2R,3R)(þ)-tartrate) and donor-acceptor building blocks in the main chain which induce a helical conformation in the macromolecular chain. A series of optically active polyurethanes containing chiral linkages in the polymer back bone have been synthesized by using DBTDL catalyst by incorporating the amido diols which were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane, and diaminohexane respectively. The effect of incorporation of the chiral molecule diethyl-(2R,3R)(þ)-tartrate on the properties of polyurethanes was studied by changing the chromophores and also by varying the chiral-chromophore composition. Various properties of polyurethanes were investigated by UV, Fluorescence, TG/DTA, XRD, polarimetric techniques, Kurtz-Perry powder techniques, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various polyurethanes containing photoactive bis(azo) and bis(o-nitrobenzyl) groups in the main chain were synthesized by polyaddition reactions of diols such as bis(4-hydroxyphenylazo)-2,20-dinitrodiphenylmethane, 4-hydroxy-3-methylphenylazo- 40-hydroxyphenylazo-2,20-dinitrodiphenylmethane and bis(4-hydroxy-3- methylphenylazo)-2,20-dinitrodiphenylmethane with hexamethylene di-isocyanate (HMDI), in dimethyl acetamide (DMAc) in the presence of di-n-butyltin dilaurate (DBTDL) as catalyst. All of them were characterized by IR, UV-vis, 1H NMR and 13C NMR spectra and also by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and gel permeation chromatography (GPC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Present thesis has discussed the design and synthesis of polymers suitable for nonlinear optics. Most of the molecules that were studied have shown good nonlinear optical activity. The second order nonlinear optical activity of the polymers was measured experimentally by Kurtz and Perry powder technique. The thesis comprises of eight chapters.The theory of NLO phenomenon and a review about the various nonlinear optical polymers has been discussed in chapter 1. The review has provided a survey of NLO active polymeric materials with a general introduction, which included the principles and the origin of nonlinear optics, and has given emphasis to polymeric materials for nonlinear optics, including guest-host systems, side chain polymers, main chain polymers, crosslinked polymers, chiral polymers etc.Chapter 2 has discussed the stability of the metal incorporated tetrapyrrole molecules, porphyrin, chlorin and bacteriochlorin.Chapter 3 has provided the NLO properties of certain organic molecules by computational tools. The chapter is divided into four parts. The first part has described the nonlinear optical properties of chromophore (D-n-A) and bichromophore (D-n-A-A-n-D) systems, which were separated by methylene spacer, by making use of DPT and semiempirical calculations.Chapter 4: A series of polyurethanes was prepared from cardanol, a renewable resource and a waste of the cashew industry by previously designed bifunctional and multifunctional polymers using quantum theoretical approach.Chapter 5: A series of chiral polyurethanes with main chain bis azo diol groups in the polymer backbone was designed and NLO activity was predicted by ZlNDO/ CV methods.In Chapter 7, polyurethanes were first designed by computational methods and the NLO properties were predicted by correction vector method. The designed bifunctional and multifunctional polyurethanes were synthesized by varying the chiral-achiral diol compositions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comprehensive overview of reclamation of cured rubber with special emphasis on latex reclamation is depicted in this paper. The latex industry has expanded over the years to meet the world demands for gloves, condoms, latex thread, etc. Due to the strict specifications for the products and the unstable nature of the latex as high as 15% of the final latex products are rejected. As waste latex rubber (WLR) represents a source of high-quality rubber hydrocarbon, it is a potential candidate for generating reclaimed rubber of superior quality. The role of the different components in the reclamation recipe is explained and the reaction mechanism and chemistry during reclamation are discussed in detail. Different types of reclaiming processes are described with special reference to processes, which selectively cleave the cross links in the vulcanized rubber. The state-of-the-art techniques of reclamation with special attention on latex treatment are reviewed. An overview of the latest development concerning the fundamental studies in the field of rubber recycling by means of low-molecular weight compounds is described. A mathematical model description of main-chain and crosslink scission during devulcanization of a rubber vulcanizate is also given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis presents the dynamics of a polymer chain under tension. It includes existing theories of polymer fracture, important theories of reaction rates, the rate using multidimensional transition state theory and apply it to the case of polyethylene etc. The main findings of the study are; the life time of the bond is somewhat sensitive to the potential lead to rather different answers, for a given potential a rough estimate of the rate can be obtained by a simples approximation that considers the dynamics of only the bond that breaks and neglects the coupling to neighboring bonds. Dynamics of neighboring bonds would decrease the rate, but usually not more than by one order of magnitude, for the breaking of polyethylene, quantum effects are important only for temperatures below 150K, the lifetime strongly depends on the strain and as the strain varies over a narrow range, the life varies rapidly from 105 seconds to 10_5 seconds, if we change one unit of the polymer by a foreign atom, say by one sulphure atom, in the main chain itself, by a weaker bond, the rate is found to increase by orders of magnitude etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model development for selection of location for refinery in India and identification of characteristics to be looked into when configuring it and to develop models for integrated supply chain planning for a refinery. Locating and removing inbound, internal and outbound logistic problems in an existing refinery and overall design of a logistic information system for a refinery are the main objectives of the study. A brief description of supply chain management (SCM), elements of SCM and their significance, logistics cost in petroleum industry and its impacts, and dynamics of petroleum its logistic practices are also to be presented. Scope of application of SCM in petroleum refinery will also be discussed. A review of the investigations carried out by earlier researches in the area of supply chain management in general and with specific reference to petroleum refining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal effusivity values in the isotropic phase of certain comb-shaped polymers have been evaluated for the first time using an open photoacoustic cell configuration. The compounds investigated have siloxane and acrylate backbone and they carry mesogenic groups in their side chain. The results indicate that the polymer chain length as well as the side chain length have pronounced influence on the thermal effusivity values in liquid crystalline polymers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Light emitting polymers (LEP) have drawn considerable attention because of their numerous potential applications in the field of optoelectronic devices. Till date, a large number of organic molecules and polymers have been designed and devices fabricated based on these materials. Optoelectronic devices like polymer light emitting diodes (PLED) have attracted wide-spread research attention owing to their superior properties like flexibility, lower operational power, colour tunability and possibility of obtaining large area coatings. PLEDs can be utilized for the fabrication of flat panel displays and as replacements for incandescent lamps. The internal efficiency of the LEDs mainly depends on the electroluminescent efficiency of the emissive polymer such as quantum efficiency, luminance-voltage profile of LED and the balanced injection of electrons and holes. Poly (p-phenylenevinylene) (PPV) and regio-regular polythiophenes are interesting electro-active polymers which exhibit good electrical conductivity, electroluminescent activity and high film-forming properties. A combination of Red, Green and Blue emitting polymers is necessary for the generation of white light which can replace the high energy consuming incandescent lamps. Most of these polymers show very low solubility, stability and poor mechanical properties. Many of these light emitting polymers are based on conjugated extended chains of alternating phenyl and vinyl units. The intra-chain or inter-chain interactions within these polymer chains can change the emitted colour. Therefore an effective way of synthesizing polymers with reduced π-stacking, high solubility, high thermal stability and high light-emitting efficiency is still a challenge for chemists. New copolymers have to be effectively designed so as to solve these issues. Hence, in the present work, the suitability of a few novel copolymers with very high thermal stability, excellent solubility, intense light emission (blue, cyan and green) and high glass transition temperatures have been investigated to be used as emissive layers for polymer light emitting diodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical properties of polymers make up an inherently interdisciplinary topic, being closely associated, on the one hand, with the mechanical properties of polymers polarization and relaxation) and, on the other hand, with the semi conductive properties (conduction and break down). In addition, unlike conventional technologies, which use these properties in its various applications like antistatic coatings, rechargeable batteries, sensors, electrochromic devices, electrochemical devices etc, microwave technology extract the microwave absorbing ability of electrically conducting polymers. The conducting polymers are widely used in its potential applications like electro magnetic interference shielding, satellite communication links, beam steering radars, frequency selective surfaces etc. Considering the relevance of microwave applications of conducting polymers, the study of microwave properties of conducting polymers stands poised to become a compelling choice for synthetic chemists and condensed - matter physicists, physical chemists and material scientists, electrochemists and polymer scientists. The main aim of the present work is to study the microwave and low frequency properties of various conducting polymers, conducting semi-interpenetrating networks, conducting copolymers and to characterise it. Also this thesis collated the microwave properties of these conducting systems and exposes the various technologically important applications in the industrial, scientific, communication and defence applications.