8 resultados para MOLECULAR-WEIGHT POLYETHYLENE

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid Crystalline DNA is emerging as an active area of research, due to its potential applications in diverse fields, ranging from nanoelectronics to therapeutics. Since, counter ion neutralization is an essential requirement for the expression of LC DNA, and the present level of understanding on the LC phase behavior of high molecular weight DNA is inadequate, a thorough investigation is required to understand the nature and stability of these phases under the influence of various cationic species. The present study is, therefore mainly focused on a comparative investigation of the effect of metal ions of varying charge, size, hydration and binding modes on the LC phase behavior of high molecular weight DNA. The main objectives of the works are investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkali metal ions, investigations on the induction and stabilization of LC phases of high molecular weight DNA by alkaline earth metal ions, effects of multivalent, transition and heavy metal ions on the LC phase behavior of high molecular weight DNA and investigations on spermine induced LC behavior of high molecular weight DNA in the presence of alkali and alkaline earth metal ions. The critical DNA concentration (CD) required for the expression of LC phases, phase transitions and their stability varied considerably when the binding site of the metal ions changed from phosphate groups to the nitrogenous bases of DNA, with Li+ giving the highest stability. Multiple LC phases with different textures, sometimes diffused and unstable or otherwise mainly distinct and clear, were observed on mixing metal ions with DNA solutions, which in turn depended on the charge, size, hydration factor, binding modes, concentration of the metal ions and time. Molecular modeling studies on binding of selected metal ions to DNA supported the experimental findings

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dept.of Polymer Science and Rubber Technology,Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties of filled natural rubber latex vulcanizates were found to be improved by the addition of polyethylene glycols of different molecular weight and glycerol. There is a slight reduction in the optimum cure times of the compounds containing PEG/Glycerol. The morphology study shows that the filler distribution is more uniform in the compounds containing PEG/Glycerol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-protein content natural rubber latex was produced by using a nonionic surfactant-polyethylene glycol (PEG). Extractable protein content of natural rubber latex was found to decrease with PEG treatment and reduction increased with increase in the molecular weight of PEG. The low-protein latex samples were characterized by tensile testing, Fourier transform infrared and thermogravimetric analysis. The results have shown 35% reduction in the extractable protein content, without any compromise on the mechanical properties of the latex; however, thermal stability of low-protein latex was found to be reduced marginally with PEG treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Anti-lipopolysaccharide factors are small proteins that bind and neutralize lipopolysaccharide and exhibit potent antimicrobial activities. This study presents the molecular characterization and phylogenetic analysis of the first ALF isoform (Pp-ALF1; JQ745295) identified from the hemocytes of Portunus pelagicus. The full length cDNA of Pp-ALF1 consisted of 880 base pairs encoding 293 amino acids with an ORF of 123 amino acids and contains a putative signal peptide of 24 amino acids. Pp-ALF1 possessed a predicted molecular weight (MW) of 13.86 kDa and theoretical isoelectric point (pI) of 8.49. Two highly conserved cysteine residues and putative LPS binding domain were observed in Pp-ALF1. Peptide model of Pp-ALF1 consisted of two α-helices crowded against a four-strand β-sheet. Comparison of amino acid sequences and neighbor joining tree showed that Pp-ALF1 has a maximum similarity (46%) to ALF present in Portunus trituberculatus followed by 39% similarity to ALF of Eriocheir sinensis and 38% similarity to ALFs of Scylla paramamosain and Scylla serrata. Pp-ALF1 is found to be a new isoform of ALF family and its characteristic similarity with other known ALFs signifies its role in protection against invading pathogens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) play a major role in innate immunity. Penaeidins are a family of AMPs that appear to be expressed in all penaeid shrimps. Penaeidins are composed of an N-terminal proline-rich domain, followed by a C-terminal domain containing six cysteine residues organized in two doublets. This study reports the first penaeidin AMP sequence, Fi-penaeidin (GenBank accession number HM243617) from the Indian white shrimp, Fenneropenaeus indicus. The full length cDNA consists of 186 base pairs encoding 61 amino acidswith an ORF of 42 amino acids and contains a putative signal peptide of 19 amino acids. Comparison of F. indicus penaeidin (Fi-penaeidin) with other known penaeidins showed that it shared maximum similarity with penaeidins of Farfantepenaeus paulensis and Farfantepenaeus subtilis (96% each). Fi-penaeidin has a predicted molecular weight (MW) of 4.478 kDa and theoretical isoelectric point (pI) of 5.3

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepcidin is a family of short cysteine-rich antimicrobial peptides (AMPs) participating in various physiological functions with inevitable role in host immune responses. Present study deals with identification and characterisation of a novel hepcidin isoform from coral fish Zanclus cornutus. The 81 amino acid (aa) preprohepcidin obtained from Z. cornutus consists of a hydrophobic aa rich 22 mer signal peptide, a highly variable proregion of 35 aa and a bioactive mature peptide with 8 conserved cysteine residues which contribute to the disulphide back bone. The mature hepcidin, Zc-hepc1 has a theoretical isoelectric point of 7.46, a predicted molecular weight of 2.43 kDa and a net positive charge of ?1. Phylogenetic analysis grouped Z. cornutus hepcidin with HAMP2 group hepcidins confirming the divergent evolution of hepcidin-like peptide in fishes. Zc-hepc1 can attain a b-hairpin-like structure with two antiparallel b-sheets. This is the first report of an AMP from the coral fish Z. cornutus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lignocellulosic biomass is probably the best alternative resource for biofuel production and it is composed mainly of cellulose, hemicelluloses and lignin. Cellulose is the most abundant among the three and conversion of cellulose to glucose is catalyzed by the enzyme cellulase. Cellulases are groups of enzymes act synergistically upon cellulose to produce glucose and comprise of endoglucanase, cellobiohydrolase and β-glucosidase. β -glucosidase assumes great importance due to the fact that it is the rate limiting enzyme. Endoglucanases (EG) produces nicks in the cellulose polymer exposing reducing and non reducing ends, cellobiohydrolases (CBH) acts upon the reducing or non reducing ends to liberate cellobiose units, and β - glucosidases (BGL) cleaves the cellobiose to liberate glucose completing the hydrolysis. . β -glucosidases undergo feedback inhibition by their own product- β glucose, and cellobiose which is their substrate. Few filamentous fungi produce glucose tolerant β - glucosidases which can overcome this inhibition by tolerating the product concentration to a particular threshold. The present study had targeted a filamentous fungus producing glucose tolerant β - glucosidase which was identified by morphological as well as molecular method. The fungus showed 99% similarity to Aspergillus unguis strain which comes under the Aspergillus nidulans group where most of the glucose tolerant β -glucosidase belongs. The culture was designated the strain number NII 08123 and was deposited in the NII culture collection at CSIR-NIIST. β -glucosidase multiplicity is a common occurrence in fungal world and in A.unguis this was demonstrated using zymogram analysis. A total 5 extracellular isoforms were detected in fungus and the expression levels of these five isoforms varied based on the carbon source available in the medium. Three of these 5 isoforms were expressed in higher levels as identified by the increased fluorescence (due to larger amounts of MUG breakdown by enzyme action) and was speculated to contribute significantly to the total _- β glucosidase activity. These isoforms were named as BGL 1, BGL3 and BGL 5. Among the three, BGL5 was demonstrated to be the glucose tolerant β -glucosidase and this was a low molecular weight protein. Major fraction was a high molecular weight protein but with lesser tolerance to glucose. BGL 3 was between the two in both activity and glucose tolerance.121 Glucose tolerant .β -glucosidase was purified and characterized and kinetic analysis showed that the glucose inhibition constant (Ki) of the protein is 800mM and Km and Vmax of the enzyme was found to be 4.854 mM and 2.946 mol min-1mg protein-1respectively. The optimumtemperature was 60°C and pH 6.0. The molecular weight of the purified protein was ~10kDa in both SDS as well as Native PAGE indicating that the glucose tolerant BGL is a monomeric protein.The major β -glucosidase, BGL1 had a pH and temperature optima of 5.0 and 60 °C respectively. The apparent molecular weight of the Native protein is 240kDa. The Vmax and Km was 78.8 mol min-1mg protein-1 and 0.326mM respectively. Degenerate primers were designed for glycosyl hydrolase families 1, 3 and 5 and the BGL genes were amplified from genomic DNA of Aspergillus unguis. The sequence analyses performed on the amplicons results confirmed the presence of all the three genes. Amplicon with a size of ~500bp was sequenced and which matched to a GH1 –BGL from Aspergillus oryzae. GH3 degenerate primers producing amplicons were sequenced and the sequences matched to β - glucosidase of GH3 family from Aspergillus nidulans and Aspergillus acculateus. GH5 degenerate primers also gave amplification and sequencing results indicated the presence of GH5 family BGL gene in the Aspergillus unguis genomic DNA.From the partial gene sequencing results, specific as well as degenerate primers were designed for TAIL PCR. Sequencing results of the 1.0 Kb amplicon matched Aspergillus nidulans β -glucosidase gene which belongs to the GH1 family. The sequence mainly covered the N-Terminal region of the matching peptide. All the three BGL proteins ie. BGL1, BGL3 and BGL5 were purified by chromatography an electro elution from Native PAGE gels and were subjected to MALDI-TOF mass spectrometric analysis. The results showed that BGL1 peptide mass matched to . β -glucosidase-I of Aspergillus flavus which is a 92kDa protein with 69% protein coverage. The glucose tolerant β -glucosidase BGL5 mass matched to the catalytic C-terminal domain of β -glucosidase-F from Emericella nidulans, but the protein coverage was very low compared to the size of the Emericella nidulans protein. While comparing the size of BGL5 from Aspergillus unguis, the protein sequence coverage is more than 80%. BGL F is a glycosyl hydrolase family 3 protein.The properties of BGL5 seem to be very unique, in that it is a GH3 β -glucosidase with a very low molecular weight of ~10kDa and at the same time having catalytic activity and glucose 122 tolerance which is as yet un-described in GH β -glucosidases. The occurrence of a fully functional 10kDA protein with glucose tolerant BGL activity has tremendous implications both from the points of understanding the structure function relationships as well as for applications of BGL enzymes. BGL-3 showed similarity to BGL1 of Aspergillus aculateus which was another GH3 β -glucosidase. It may be noted that though PCR could detect GH1, GH3 and GH5 β-glucosidases in the fungus, the major isoforms BGL1 BGL3 and BGL5 were all GH3 family enzymes. This would imply that β-glucosidases belonging to other families may also co-exist in the fungus and the other minor isoforms detected in zymograms may account for them. In biomass hydrolysis, GT-BGL containing BGL enzyme was supplemented to cellulase and the performances of blends were compared with a cocktail where commercial β- glucosidase was supplemented to the biomass hydrolyzing enzyme preparation. The cocktail supplemented with A unguis BGL preparation yielded 555mg/g sugar in 12h compared to the commercial enzyme preparation which gave only 333mg/g in the same period and the maximum sugar yield of 858 mg/g was attained in 36h by the cocktail containing A. unguis BGL. While the commercial enzyme achieved almost similar sugar yield in 24h, there was rapid drop in sugar concentration after that, indicating probably the conversion of glucose back to di-or oligosaccharides by the transglycosylation activity of the BGl in that preparation. Compared this, the A.unguis enzyme containing preparation supported peak yields for longer duration (upto 48h) which is important for biomass conversion to other products since the hydrolysate has to undergo certain unit operations before it goes into the next stage ie – fermentation in any bioprocesses for production of either fuels or chemicals.. Most importantly the Aspergillus unguis BGL preparation yields approximately 1.6 fold increase in the sugar release compared to the commercial BGL within 12h of time interval and 2.25 fold increase in the sugar release compared to the control ie. Cellulase without BGL supplementation. The current study therefore leads to the identification of a potent new isolate producing glucose tolerant β - glucosidase. The organism identified as Aspergillus unguis comes under the Aspergillus nidulans group where most of the GT-BGL producers belong and the detailed studies showed that the glucose tolerant β -glucosidase was a very low molecular weight protein which probably belongs to the glycosyl hydrolase family 3. Inhibition kinetic studies helped to understand the Ki and it is the second highest among the nidulans group of Aspergilli. This has promoted us for a detailed study regarding the mechanism of glucose tolerance. The proteomic 123 analyses clearly indicate the presence of GH3 catalytic domain in the protein. Since the size of the protein is very low and still its active and showed glucose tolerance it is speculated that this could be an entirely new protein or the modification of the existing β -glucosidase with only the catalytic domain present in it. Hydrolysis experiments also qualify this BGL, a suitable candidate for the enzyme cocktail development for biomass hydrolysis