5 resultados para MODELING APPROACH

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel fast method for modeling mammograms by deterministic fractal coding approach to detect the presence of microcalcifications, which are early signs of breast cancer, is presented. The modeled mammogram obtained using fractal encoding method is visually similar to the original image containing microcalcifications, and therefore, when it is taken out from the original mammogram, the presence of microcalcifications can be enhanced. The limitation of fractal image modeling is the tremendous time required for encoding. In the present work, instead of searching for a matching domain in the entire domain pool of the image, three methods based on mean and variance, dynamic range of the image blocks, and mass center features are used. This reduced the encoding time by a factor of 3, 89, and 13, respectively, in the three methods with respect to the conventional fractal image coding method with quad tree partitioning. The mammograms obtained from The Mammographic Image Analysis Society database (ground truth available) gave a total detection score of 87.6%, 87.6%, 90.5%, and 87.6%, for the conventional and the proposed three methods, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Letter a new physical model for metal-insulatormetal CMOS capacitors is presented. In the model the parameters of the circuit are derived from the physical structural details. Physical behaviors due to metal skin effect and inductance have been considered. The model has been confirmed by 3D EM simulator and design rules proposed. The model presented is scalable with capacitor geometry, allowing designers to predict and optimize quality factor. The approach has been verified for MIM CMOS capacitors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Safety critical software failure can have a high price. Such software should be free of errors before it is put into operation. Application of formal methods in the Software Development Life Cycle helps to ensure that the software for safety critical missions are ultra reliable. PVS theorem prover, a formal method tool, can be used for the formal verification of software in ADA Language for Flight Software Application (ALFA.). This paper describes the modeling of ALFA programs for PVS theorem prover. An ALFA2PVS translator is developed which automatically converts the software in ALFA to PVS specification. By this approach the software can be verified formally with respect to underflow/overflow errors and divide by zero conditions without the actual execution of the code.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Safety critical software failure can have a high price. Such software should be free of errors before it is put into operation. Application of formal methods in the Software Development Life Cycle helps to ensure that the software for safety critical missions are ultra reliable. PVS theorem prover, a formal method tool, can be used for the formal verification of software in ADA Language for Flight Software Application (ALFA.). This paper describes the modeling of ALFA programs for PVS theorem prover. An ALFA2PVS translator is developed which automatically converts the software in ALFA to PVS specification. By this approach the software can be verified formally with respect to underflow/overflow errors and divide by zero conditions without the actual execution of the code