5 resultados para MATRIX METALLOPROTEINASE-2
em Cochin University of Science
Resumo:
The objectives of the proposed work are preparation of ceramic nickel zinc ferrite belonging to the series Ni1-XZnXFe2O4 with x varying from 0 to 1in steps of 0.2, structrural, magnetic and electrical characterization of Ni1-XZnXFe2O4, preparation and evaluation of Cure characteristics of Rubber Ferrite Composites (RFCs), magnetic characterization of RFCs using vibrating sample magnetometer (VSM), electrical characterization of RFCs and estimation of magnetostriction constant form HL parameters. The study deals with the structural and magnetic properties of ceramic fillers, variation of coercivity with composition and the variation of magnetization for different filler loadings are compared and correlated. The dielectric properties of ceramic Ni1-XZnXFe2O4 and rubber ferrite composites containing Ni1-XZnXFe2O4 were evaluated and the ac electrical conductivity (ac) of ceramic as well as composite samples can be calculated by using a simple relationship of the form ac = 2f tan 0r, with the data available from dielectric measurements. The results suggest that the ac electrical conductivity is directly proportional to the frequency
Resumo:
Optical absorption and emission spectral studies of free and metal naphthalocyanine doped borate glass matrix are reported for the first time. Absorption spectra recorded in the UV- VIS-NIR region show the characteristic absorption bands, namely, the B-band and Q-band of the naphthalocyanine (Nc) molecule. Some of the important spectral parameters, namely, the optical absorption coefficient (α), molar extinction coefficient (ε) and absorption cross section (σa) of the principal absorption transitions are determined. Optical band gap (Eg) of the materials evaluated from the functional dependence of absorption coefficient on photon energy lies in the range 1.6 eV≤Eg≤2.1 eV. All fluorescence spectra except that of EuNc consist of an intense band in the 765 nm region corresponding to the excitation of Q-band. In EuNc the maximum fluorescence intensity band is observed at 824 nm. The intensity of the principal fluorescence band is maximum in ZnNc, whereas it is minimum in H2Nc. Radiative parameters of the principal fluorescence transitions corresponding to the Q-band excitation are also reported for the naphthalocyanine and phthalocyanine based matrices.
Resumo:
Optical properties of free and substituted porphyrins (PP) doped borate glass matrix are reported for the first time. Absorption spectral measurements of H2TPP, CdTPP, MgTPP and ZnTPP doped borate glass matrix have been made in the 200–1100 nm region and the spectra obtained are analyzed to obtain the optical bandgap (Eg) and other important spectral parameters viz. oscillator strength (f), molar extinction coefficient (ε), electric dipole strength (q2), absorption cross-section (σa) and molecular concentration (N). Intense fluorescence was observed in the region 668–685 nm for CdTPP, ZnTPP and MgTPP doped matrices, whereas no such fluorescence was observed in H2TPP doped matrix. Fluorescence intensity was observed to be almost similar in all the metallated porphyrine matrices. Fluorescence bandwidth (Δλ), decay time (τ), stimulated emission cross-section (σ) and optical gain (G) of the principal fluorescence transitions corresponding to the Q-band excitation were also evaluated and discussed.
Resumo:
The nanosecond optical-limiting characteristics (at 532 nm) of some rare-earth metallo-phthalocyanines (Sm(Pc)2, Eu(Pc)2, and LaPc) doped in a copolymer matrix of poly(methyl methacrylate) and methyl-2-cyanoacrylate have been studied for the first time to our knowledge. The optical-limiting response is attributed to reverse saturable absorption due to excited-state absorption. The performance of LaPc in a copolymer host is studied at different linear transmissions. The laser damage thresholds of all the samples are also reported.
Resumo:
Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components