43 resultados para Luminescence of solids

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis entitled “ Investigations on the solvent extraction and luminescence of lanthanoids with mixtures of heterocyclic β-diketone S and various neutral oxo-donors” embodies the results of investigations carried out on the solvent extraction of trivalent lanthanoids with various heterocyclic β-diketones in the presence and absence of neutral oxo-donors and also on the luminescent studies of Eu3+-heterocyclic β-diketonate complexes with Lewis bases. The primary objective of the present work is to generate the knowledge base, especially to understand the interactions of lanthanoid-heterocyclic β-diketonates with various macrocyclic ligands such as crown ethers and neutral organophosphorus extractants , with a view to achieve better selectivity. The secondary objective of this thesis is to develop novel lanthanoid luminescent materials based on 3-phenyl-4-aroyl-5-isoxazolones and organophosphorus ligands, for use in electroluminescent devices. In the beginning it describes the need for the development of new mixed-ligand systems for the separation of lanthanoids and the development and importance of novel luminescent lanthanoid- β-diketonate complexes for display devices. The syntheses of various para substituted derivatives of 4-aroyl-5-isoxazolones and their characterization by various spectroscopic techniques are described. It also investigate the solvent extraction behaviour of trivalent lanthanoids with 4-aroyl-5-isoxazolones in the presence and absence of various crown ethers such as 18C6, DC18C6, DB18C6 and B18C6. Elemental analysis, IR and H NMR spectral studies are used to understand the interactions of crown ethers with 4-aroyl-5-isoxazolonate complexes of lanthanoids. The synergistic extraction of trivalent lanthanoids with sterically hindered 1-phenyl-3-methyl-4-pivaloyl-5-pyrazolone in the presence of various structurally related crown ethers are studied. The syntheses, characterization and photyphysical properties of Eu3+-4-aroyl-5-isoxazolonate complexes in the presence of Lewis bases like trictylphosphine oxide or triphenylphosphine oxide were studied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work is an attempt to probe the elastic properties in some dielectric ceramics, by using ultrasonic pulse echo overlap technique. The base Ba6-xSm8+2xTi18O54 and Ca5Nb2TiO12 are very important dielectrics ceramics used for microwave communication as well as for substrate materials. Ultrasonic is one of the most widely used and powerful techniques to measure elastic properties of solids. The ultrasonic technique is nondestructive in nature and the measurements are relatively straightforward to perform. One unique advantantage of the ultrasonic technique is that both static and dynamic properties can be measured simultaneously. The velocity and attenuation coefficients of the ultrasonic waves propagating through a medium are related to the microscopic structure of the material and they provide valuable information about the structural changes in the system. Among the various ultrasonic techniques, the pulse echo overlap method is the most accurate and precise one. In the present case the decreased elastic properties of Cas-XMg,Nb2TiO12 and Cas-,ZnNb2TiO12 ceramics can be attributed to their mixture phases beyond x = 1. Moreover, the abrupt change in elastic properties observed for x >1 can also be correlated to the structural transformation of the materials from their phase pure form to mixture phases for higher extent of substitution of the concerned material . Ca4(ANb2Ti)012 (A = Mg, Zn) is the strongest compound with the maximum values for elastic properties . This could be due to the possible substitution of Mg/Zn ions with lesser radius [25] than Ca2+ in perovskite B-site of Ca(Cali4Nb2i4Tili4) O3 material to contribute more ordering and symmetry to the system [20]. All other compositions (x > 1) contain mixed-phases and for such mixed-phase samples, the mechanical properties are difficult to explain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The annealing effect on the spectral and nonlinear optical NLO characteristics of ZnO thin films deposited on quartz substrates by sol-gel process is investigated. As the annealing temperature increases from 300–1050 °C, there is a decrease in the band gap, which indicates the changes of the interface of ZnO. ZnO is reported to show two emission bands, an ultraviolet UV emission band and another in the green region. The intensity of the UV peak remains the same while the intensity of the visible peak increases with increase in annealing temperature. The role of oxygen in ZnO thin films during the annealing process is important to the change in optical properties. The mechanism of the luminescence suggests that UV luminescence of ZnO thin films is related to the transition from conduction band edge to valence band, and green luminescence is caused by the transition from deep donor level to valence band due to oxygen vacancies. The NLO response of these samples is studied using nanosecond laser pulses at off-resonance wavelengths. The nonlinear absorption coefficient increases from 2.9 ×10−6 to 1.0 ×10−4 m/W when the annealing temperature is increased from 300 to 1050 °C, mainly due to the enhancement of interfacial state and exciton oscillator strength. The third order optical susceptibility x(3) increases with increase in annealing temperature (T) within the range of our investigations. In the weak confinement regime, T2.4 dependence of x(3) is obtained for ZnO thin films. The role of annealing temperature on the optical limiting response is also studied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current study is aimed at the development of a theoretical simulation tool based on Discrete Element Method (DEM) to 'interpret granular dynamics of solid bed in the cross section of the horizontal rotating cylinder at the microscopic level and subsequently apply this model to establish the transition behaviour, mixing and segregation.The simulation of the granular motion developed in this work is based on solving Newton's equation of motion for each particle in the granular bed subjected to the collisional forces, external forces and boundary forces. At every instant of time, the forces are tracked and the positions velocities and accelarations of each partcle is The software code for this simulation is written in VISUAL FORTRAN 90 After checking the validity of the code with special tests, it is used to investigate the transition behaviour of granular solids motion in the cross section of a rotating cylinder for various rotational speeds and fill fraction.This work is hence directed towards a theoretical investigation based on Discrete Element Method (DEM) of the motion of granular solids in the radial direction of the horizontal cylinder to elucidate the relationship between the operating parameters of the rotating cylinder geometry and physical properties ofthe granular solid.The operating parameters of the rotating cylinder include the various rotational velocities of the cylinder and volumetric fill. The physical properties of the granular solids include particle sizes, densities, stiffness coefficients, and coefficient of friction Further the work highlights the fundamental basis for the important phenomena of the system namely; (i) the different modes of solids motion observed in a transverse crosssection of the rotating cylinder for various rotational speeds, (ii) the radial mixing of the granular solid in terms of active layer depth (iii) rate coefficient of mixing as well as the transition behaviour in terms of the bed turnover time and rotational speed and (iv) the segregation mechanisms resulting from differences in the size and density of particles.The transition behaviour involving its six different modes of motion of the granular solid bed is quantified in terms of Froude number and the results obtained are validated with experimental and theoretical results reported in the literature The transition from slumping to rolling mode is quantified using the bed turnover time and a linear relationship is established between the bed turn over time and the inverse of the rotational speed of the cylinder as predicted by Davidson et al. [2000]. The effect of the rotational speed, fill fraction and coefficient of friction on the dynamic angle of repose are presented and discussed. The variation of active layer depth with respect to fill fraction and rotational speed have been investigated. The results obtained through simulation are compared with the experimental results reported by Van Puyvelde et. at. [2000] and Ding et at. [2002].The theoretical model has been further extended, to study the rmxmg and segregation in the transverse direction for different particle sizes and their size ratios. The effect of fill fraction and rotational speed on the transverse mixing behaviour is presented in the form of a mixing index and mixing kinetics curve. The segregation pattern obtained by the simulation of the granular solid bed with respect to the rotational speed of the cylinder is presented both in graphical and numerical forms. The segregation behaviour of the granular solid bed with respect to particle size, density and volume fraction of particle size has been investigated. Several important macro parameters characterising segregation such as mixing index, percolation index and segregation index have been derived from the simulation tool based on first principles developed in this work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Irradiation of a Polymethyl methacrylate target using a pulsed Nd-YAG laser causes plasma formation in the vicinity of the target. The refractive index gradient due to the presence of the plasma is probed using phase-shift detection technique. The phase-shift technique is a simple but sensitive technique for the determination of laser ablation threshold of solids. The number density of laser generated plasma above the ablation threshold from Polymethyl methacrylate is calculated as a function of laser fluence. The number density varies from 2×1016 cm-3 to 2×1017 cm-3 in the fluence interval 2.8-13 J · cm-2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article we present size dependent spectroscopic observations of nanocolloids of ZnO. ZnO is reported to show two emission bands, an ultraviolet (UV) emission band and another in the green region. Apart from the known band gap 380 nm and impurity 530 nm emissions, we have found some peculiar features in the fluorescence spectra that are consistent with the nanoparticle size distribution. Results show that additional emissions at 420 and 490 nm are developed with particle size. The origin of the visible band emission is discussed. The mechanism of the luminescence suggests that UV luminescence of ZnO colloid is related to the transition from conduction band edge to valence band, and visible luminescence is caused by the transition from deep donor level to valence band due to oxygen vacancies and by the transition from conduction band to deep acceptor level due to impurities and defect states. A correlation analysis between the particle size and spectroscopic observations is also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasma polymerization is found to be an excellent technique for the preparation of good quality, pinhole-free, polymer thin films from different monomer precursors. The present work describes the preparation and characterization of polypyrrole (PPy) thin films by ac plasma polymerization technique in their pristine and in situ iodine doped forms. The electrical conductivity studies of the aluminiumpolymeraluminium (AlpolymerAl) structures have been carried out and a space charge limited conduction (SCLC) mechanism is identified as the most probable mechanism of carrier transport in these polymer films. The electrical conductivity shows an enhanced value in the iodine doped sample. The reduction of optical band gap by iodine doping is correlated with the observed conductivity results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis deals with preparing stoichiometric crystalline thin films of InSe and In2Se3 by elemental evapouration and their property investigation.In the present study three temperature( or Elemental evapouration) method is utilized for the deposition of crystalline thin films . The deposition mechanism using three temperature method deals’ with condensation of solids on heated surfaces when the critical supersaturation of the vapour phase exceeds a certain limit. The critical values of the incident flux are related to substrate temperature and the interfacial energies of the involved vapours. At a favorable presence of component atoms in the vapour phase these can react and condense onto a substrate even at a elevated temperature. In the studies conducted the most significant factor is the formation of single compositional film namely indium mono selenide in the In –se system of compounds .Further this work shows the feasibility of thin film photovoltaic junctions of the schottky barrier type

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polyaniline is chemically synthesised and doped with camphor sulphonic acid. FTIR studies carried out on these samples indicate that the aromatic rings are retained after polymerisation. The percentage of crystallinity for polyaniline doped with camphor sulphonic acid has been estimated from the X-ray diffraction studies and is around 56% with respect to polyaniline emeraldine base. The change in dielectric permittivity with respect to temperature and frequency is explained on the basis of interfacial polarisation. AC conductivity is evaluated from the observed dielectric permittivity. The values of AC and DC conductivity and activation energy are calculated. The activation energy values suggested that the hopping conduction is the prominent conduction mechanism in this system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Raman spectra of the KTP single crystal are recorded in electric fields (dc and ac) applied along the polar axis c. Spectra with the laser beam focused near the cathode end, anode end and the centre of the crystal are recorded. The cathode end of the crystal develops a spot ‘grey track’ where the laser beam is focused after a lapse of 5 h from the application of a dc electric field of 38 V/cm. The spectra recorded at the cathode end after the application of field show variations in intensity of bands. A new band appears at 177 cm21. Changes in band intensities are explained on the basis of changes in polarizability of the crystal due to the movement of K1 ions along the polar axis. K1 ions accumulate at the cathode end, where the ‘Grey track’ formation occurs. The intensity enhancement observed for almost all bands in the ac field is attributed to the improvement of crystalline quality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Raman and FTIR spectra of CaFeTi(PO4)3 and CdFeTi(PO4)3 are recorded and analyzed. The observed bands are assigned in terms of vibrations of TiO6 octahedra and PO4 tetrahedra. The symmetry of TiO6 octrahedra and PO4 tetrahedra is lowered from their free ion symmetry. The presence of Fe3+ ion disrupts the Ti–O–P–O–Ti chain and leads to the distortion of TiO6 octrahedra and PO4 tetrahedra. The PO4 3 tetrahedra in both crystals are linearly distorted. The covalency bonding factor of PO4 3 polyanion of both the crystals are calculated from the Raman spectra and compared to that of other Nasicon-type systems. The numerical values of covalency bonding factor indicates that there is a reduction in redox energy and cell voltage and is attributed to strong covalency of PO4 3 polyanionin

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several series of Eu3+ based red emitting phosphor materials were synthesized using solid state reaction route and their properties were characterized. The present studies primarily investigated the photoluminescence properties of Eu3+ in a family of closely related host structure with a general formula Ln3MO7. The results presented in the previous chapters throws light to a basic understanding of the structure, phase formation and the photoluminescence properties of these compounds and their co-relations. The variation in the Eu3+ luminescence properties with different M cations was studied in Gd3-xMO7 (M = Nb, Sb, Ta) system.More ordering in the host lattice and more uniform distribution of Eu3+ ions resulting in the increased emission properties were observed in tantalate system.Influence of various lanthanide ion (Lu, Y, Gd, La) substitutions on the Eu3+ photoluminescence properties in Ln3MO7 host structures was also studied. The difference in emission profiles with different Ln ions demonstrated the influence of long range ordering, coordination of cations and ligand polarizability in the emission probabilities, intensity and quantum efficiency of these phosphor materials. Better luminescence of almost equally competing intensities from all the 4f transitions of Eu3+ was noticed for La3TaO7 system. Photoluminescence properties were further improved in La3TaO7 : Eu3+ phosphors by the incorporation of Ba2+ ions in La3+ site. New red phosphor materials Gd2-xGaTaO7 : xEu3+ exhibiting intense red emissions under UV excitation were prepared. Optimum doping level of Eu3+ in these different host lattices were experimentally determined. Some of the prepared samples exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. In the present studies, Eu3+ acts as a structural probe determining the coordination and symmetry of the atoms in the host lattice. Results from the photoluminescence studies combined with the powder XRD and Raman spectroscopy investigations helped in the determination of the correct crystal structures and phase formation of the prepared compounds. Thus the controversy regarding the space groups of these compounds could be solved to a great extent. The variation in the space groups with different cation substitutions were discussed. There was only limited understanding regarding the various influential parameters of the photoluminescence properties of phosphor materials. From the given studies, the dependence of photoluminescence properties on the crystal structure and ordering of the host lattice, site symmetries, polarizability of the ions, distortions around the activator ion, uniformity in the activator distribution, concentration of the activator ion etc. were explained. Although the presented work does not directly evidence any application, the materials developed in the studies can be used for lighting applications together with other components for LED lighting. All the prepared samples were well excitable under near UV radiation. La3TaO7 : 0.15Eu3+ phosphor with high efficiency and intense orange red emissions can be used as a potential red component for the realization of white light with better color rendering properties. Gd2GaTaO7 : Eu3+, Bi2+ red phosphors give good color purity matching to NTSC standards of red. Some of these compounds exhibited higher emission intensities than the standard Y2O3 : Eu3+ red phosphors. However thermal stability and electrical output using these compounds should be studied further before applications. Based on the studies in the closely related Ln3MO7 structures, some ideas on selecting better host lattice for improved luminescence properties could be drawn. Analyzing the CTB position and the number of emission splits, a general understanding on the doping sites can be obtained. These results could be helpful for phosphor designs in other host systems also, for enhanced emission intensity and efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, we present the results of our investigations on the photoconducting and electrical switching properties of selected chalcogenide glass systems. We have used XRD and X-ray photoelectron spectroscopy (XPS) analysis for confinuing the amorphous nature of these materials and for confirming their constituents respectively.Photoconductivity is the enhancement in electrical conductivity of materials brought about by the motion of charge carriers excited by absorbed radiation. The phenomenon involves absorption, photogeneration, recombination and transport processes and it gives good insight into the density of states in the energy gap of solids due to the presence of impurities and lattice defects. Photoconductivity measurements lead to the determination of such important parameters as quantum efficiency, photosensiti\'ity, spectral sensitivity and carrier lifetime. Extensive research work on photoconducting properties of amorphous semiconductors has resulted in the development of a variety of very sensitive photodetectors. Photoconductors are finding newer and newer uses eyery day. CdS, CdSe. Sb2S3, Se, ZnO etc, are typical photoconducting materials which are used in devices like vidicons, light amplifiers, xerography equipment etc.Electrical switching is another interesting and important property possessed by several Te based chalcogenides. Switching is the rapid and reversible transition between a highly resistive OFF state, driven by an external electric field and characterized by a threshold voltage, and a low resistivity ON state, Switching can be either threshold type or memory type. The phenomenon of switching could find applications in areas like infonnation storage, electrical power control etc. Investigations on electrical switching in chalcogenide glasses help in understanding the mechanism of switching which is necessary to select and modify materials for specific switching applications.Analysis of XRD pattern gives no further infonuation about amorphous materials than revealing their disordered structure whereas x-ray photoelectron spectroscopy,XPS) provides information about the different constituents present in the material. Also it gives binding energies (b.e.) of an element in different compounds and hence b.e. shift from the elemental form.Our investigations have been concentrated on the bulk glasses, Ge-In-Se, Ge-Bi-Se and As-Sb-Se for photoconductivity measurements and In-Te for electrical switching. The photoconducting properties of Ge-Sb-Se thin films prepared by sputtering technique have also been studied. The bulk glasses for the present investigations are prepared by the melt quenching technique and are annealed for half an hour at temperatures just below their respective glass transition temperatures. The dependence of photoconducting propenies on composition and temperature are investigated in each system. The electrical switching characteristics of In-Te system are also studied with different compositions and by varying the temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary aim of these investigations was to probe the elecnuchemical and material science aspects of some selected metal phthalocyanines(MPcs).Metal phthalocyanines are characterised by a unique planar molecular structure. As a single class of compounds they have been the subject of ever increasing number of physicochemical and technological investigations. During the last two decades the literature on these compounds was flooded by an outpour of original publications and patents. Almost every branch of materials science has benefited by their application-swface coating, printing, electrophotography, photoelectrochemistry, electronics and medicine to name a few.The present study was confined to the electrical and electrochemical properties of cobalt, nickel, zinc. iron and copper phthalocyanines. The use of soluble Pes as corrosion inhibitor for aluminium was also investigated.In the introductory section of the thesis, the work done so far on MPcs is reviewed. In this review emphasis is given to their general methods of synthesis and the physicochemical properties.In phthalocyanine chemistry one of the formidable tasks is the isolation of singular species. In the second chapter the methods of synthesis and purification are presented with necessary experimental details.The studies on plasma modified films of CoPe, FePc, ZnPc. NiPc and CuPc are also presented.Modification of electron transfer process by such films for reversible redox systems is taken as the criterion to establish enhanced electrocatalytic activity.Metal phthalocyanines are p- type semiconductors and the conductivity is enhanced by doping with iodine. The effect of doping on the activation energy of the conduction process is evaluated by measuring the temperature dependent variation of conductivity. Effect of thennal treatment on iodine doped CoPc is investigated by DSC,magnetic susceptibility, IR, ESR and electronic spectra. The elecnucatalytic activity of such doped materials was probed by cyclic voltammetry.The electron transfer mediation characteristics of MPc films depend on the film thickness. The influence of reducing the effective thickness of the MPc film by dispersing it into a conductive polymeric matrix was investigated. Tetrasulphonated cobalt phthalocyanine (CoTSP) was electrostatically immobilised into polyaniline and poly(o-toluidine) under varied conditions.The studies on corrosion inhibition of aluminium by CoTSP and CuTSP and By virtue of their anionic character they are soluble in water and are strongly adsorbed on aluminium. Hence they can act as corrosion inhibitors. CoTSP is also known to catalyze the reduction of dioxygen.This reaction can accelerate the anodic dissolution of metal as a complementary reaction. The influence of these conflicting properties of CoTSP on the corrosion of aluminium was studied and compared with those of CuTSP.In the course of these investigations a number of gadgets like cell for measuring the electrical conductivity of solids under non-isothermal conditions, low power rf oscillator and a rotating disc electrode were fabricated.