5 resultados para Longshore sediment transport

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment transport in the nearshore areas is an important process in deciding the coastline stability. The design and effective maintenance of navigable waterways, harbours and marine structures depend on the stability of the sediment substrate and the nature of sedimentation in the nearshore zone. The nearshore zone is a complex environment and the exact relationships existing between water motions and the resulting sediment transports are not well understood. During the rough weather season, when the sediment movement is considerable, processes occurring in the nearshore area are much less understood. Moreover, there is a general lack of field measurements, especially during the time of severe storm conditions. The increasing pressures and the concern on the preservation of the valuable coastal environment have led to the development of shore protection programmes. Conservation not only demands knowledge of what needs to be done, but also requires the basic processes to be fully understood. Considering the fragile nature of barrier beaches and intense occupancy of these areas by man, these coastal features have long been a subject of study by coastal oceanographers, geomorphologists and engineers. The present study is an attempt to understand the sediment movement in relation to beach dynamics, especially in the surf zone, along some part of Kerala coast and the response of the beaches to various forcing functions over different seasons

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is proposed to study the suspended sediment transport characteristics of river basins of Kerala and to model suspended sediment discharge mechanism for typical micro-watersheds. The Pamba river basin is selected as a representative hydrologic regime for detailed studies of suspended sediment characteristics and its seasonal variation. The applicability of various erosion models would be tested by comparing with the observed event data (by continuous monitoring of rainfall, discharge, and suspended sediment concentration for lower order streams). Empirical, conceptual and physically distributed models were used for making the comparison of performance of the models. Large variations in the discharge and sediment quantities were noticed during a particular year between the river basins investigated and for an individual river basin during the years for which the data was available. In general, the sediment yield pattern follows the seasonal distribution of rainfall, discharge and physiography of the land. This confirms with similar studies made for other Indian rivers. It was observed from this study, that the quantity of sediment transported downstream shows a decreasing trend over the years corresponding to increase in discharge. For sound and sustainable management of coastal zones, it is important to understand the balance between erosion and retention and to quantify the exact amount of the sediments reaching this eco-system. This, of course, necessitates a good length of time series data and more focused research on the behaviour of each river system, both present and past. In this realm of river inputs to ocean system, each of the 41 rivers of Kerala may have dominant yet diversified roles to influence the coastal ecosystem as reflected from this study on the major fraction of transport, namely the suspended sediments

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Satellite remote sensing is being effectively used in monitoring the ocean surface and its overlying atmosphere. Technical growth in the field of satellite sensors has made satellite measurement an inevitable part of oceanographic and atmospheric research. Among the ocean observing sensors, ocean colour sensors make use of visible band of electromagnetic spectrum (shorter wavelength). The use of shorter wavelength ensures fine spatial resolution of these parameters to depict oceanographic and atmospheric characteristics of any region having significant spaio-temporal variability. Off the southwest coast of India is such an area showing very significant spatio-temporal oceanographic and atmospheric variability due to the seasonally reversing surface winds and currents. Consequently, the region is enriched with features like upwelling, sinking, eddies, fronts, etc. Among them, upwelling brings nutrient-rich waters from subsurface layers to surface layers. During this process primary production enhances, which is measured in ocean colour sensors as high values of Chl a. Vertical attenuation depth of incident solar radiation (Kd) and Aerosol Optical Depth (AOD) are another two parameters provided by ocean colour sensors. Kd is also susceptible to undergo significant seasonal variability due to the changes in the content of Chl a in the water column. Moreover, Kd is affected by sediment transport in the upper layers as the region experiences land drainage resulting from copious rainfall. The wide range of variability of wind speed and direction may also influence the aerosol source / transport and consequently AOD. The present doctoral thesis concentrates on the utility of Chl a, Kd and AODprovided by satellite ocean colour sensors to understand oceanographic and atmospheric variability off the southwest coast of India. The thesis is divided into six Chapters with further subdivisions