2 resultados para Local productive arrangement intense culture
em Cochin University of Science
Resumo:
The study has wider policy implications as it identifies the possible variables which influence the sustainability of participatory productive sector projects. The method which is developed to study the sustainability of projects under People’s Planning in Chempu Panchayat could be used for studying the same in other panchayats also. Unlike the case of the standard features of sustainability identified, the independent variables vary according to the nature of the project. Hence, this needs to be modified accordingly while applying the method in a dissimilar domain. Selection of a single panchayat for the present study is relevant on the basis of a common package of inputs for decentralised planning which is forwarded by the State Planning Board respectively for the three-tier panchayat system in Kerala. The dynamic filed realities could be brought out in view of a comprehensive planning approach through an in depth study of specific cases.The assessment of the nature and pattern of productive sector projects in the selected Village Panchayat puts the projects under close scrutiny. The analysis has depended largely on secondary sources of information, especially from panchayat level plan documents, and also on the primary information obtained using direct observation and on-site inspection of project sites. An analysis of the nature and pattem of productive sector projects is important as it gives all necessary information regarding follow-up, monitoring/evaluation and even termination of a particular project. It has also revealed the tendencies of including infrastructure and service sector projects under ‘productive’ category, especially for maintaining the stipulated ratio (40:30:30) of grant-in-aid distribution. The study regarding the allocation and expenditure pattern of plan funds is vital in policy level as it reveals the under-noticed allocation and expenditure pattern of plan funds other than grant-in-aid. One major limitation of the study has been the limited availability of secondary data, especially regarding project-wise expenditure and monitoring/evaluation reports of various project committees.
Resumo:
Near-infrared spectroscopy can be a workhorse technique for materials analysis in industries such as agriculture, pharmaceuticals, chemicals and polymers. A near-infrared spectrum represents combination bands and overtone bands that are harmonics of absorption frequencies in the mid-infrared. Near-infrared absorption includes a combination-band region immediately adjacent to the mid-infrared and three overtone regions. All four near-infrared regions contain "echoes" of the fundamental mid-infrared absorptions. For example, vibrations in the mid-infrared due to the C-H stretches will produce four distinct bands in each of the overtone and combination regions. As the bands become more removed from the fundamental frequencies they become more widely separated from their neighbors, more broadened and are dramatically reduced in intensity. Because near-infrared bands are much less intense, more of the sample can be used to produce a spectra and with near-infrared, sample preparation activities are greatly reduced or eliminated so more of the sample can be utilized. In addition, long path lengths and the ability to sample through glass in the near-infrared allows samples to be measured in common media such as culture tubes, cuvettes and reaction bottles. This is unlike mid-infrared where very small amounts of a sample produce a strong spectrum; thus sample preparation techniques must be employed to limit the amount of the sample that interacts with the beam. In the present work we describe the successful the fabrication and calibration of a linear high resolution linear spectrometer using tunable diode laser and a 36 m path length cell and meuurement of a highly resolved structure of OH group in methanol in the transition region A v =3. We then analyse the NIR spectrum of certain aromatic molecules and study the substituent effects using local mode theory