10 resultados para Lithium alloys

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient interaction between a refraction index grating and light beams during simultaneous writing and thermal fixing of a photorefractive hologram is investigated. With a diffusion- and photovoltaic-dominated carrier transport mechanism and carrier thermal activation (temperature dependent) considered in Fe:LiNbO3 crystal, from the standpoint of field-material coupling, the theoretical thermal fixing time and the space-charge field buildup, spatial distribution, and temperature dependence are given numerically by combining the band transport model with mobile ions with the coupled-wave equation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed ultrasonic study of the elastic properties of lithium ammonium sulfate ~LiNH4SO4! or LAS has been carried out below room temperature. The elastic constants of LAS at room temperature are reported. The discrepancy present in earlier elastic constant data associated with the different choice of axes for this orthorhombic system are clarified. The results of the temperature variation study down to 220 K confirm the ferroelastic phase transition at 285 K and establish a thermal hysteresis of about 2.5 K between the cooling and heating cycles. Results of the investigation on the suspected weak phase transition at 256 K suggest that this transition occurs at 242 K on cooling and at 256 K on heating, thus having a thermal hysteresis of about 14 K. However, since the observed elastic anomaly for this transition is very small, the nature of this transition still remains unclear

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The double sulfate family (ABSO4), where A and B are alkali metal cations, is the object of great interest owing to the complexity and richness of its sequence of phase transition induced by temperature variation. A new sulfate salt characterized by the presence of water molecule in the unit cell with the chemical formula, Li2Na3(SO4)2⋅6H2O (LSSW), was obtained. The ultrasonic velocity measurement was done with pulse echo overlap technique [PEO]. All the six second order elastic stiffness constants, C11 = C22, C33, C44 = C55, C12, C14 and C13 = C23 are reported for the first time. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the polar plots of phase velocity, slowness, Young’s modulus and linear compressibility in a–b and a–c planes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in the thesis is centered around two important types of cathode materials, the spinel structured LixMn204 (x =0.8to1.2) and the phospho -oIivine structured LiMP04 (M=Fe and Ni). The spinel system LixMn204, especially LiMn204 corresponding to x= 1 has been extensively investigated to understand its structural electrical and electrochemical properties and to analyse its suitability as a cathode material in rechargeable lithium batteries. However there is no reported work on the thermal and optical properties of this important cathode material. Thermal diffusivity is an important parameter as far as the operation of a rechargeable battery is concerned. In LixMn204, the electronic structure and phenomenon of Jahn-Teller distortion have already been established theoretically and experimentally. Part of the present work is an attempt to use the non-destructive technique (NDT) of photoacoustic spectroscopy to investigate the nature of the various electronic transitions and to unravel the mechanisms leading to the phenomenon of J.T distortion in LixMn204.The phospho-olivines LiMP04 (M=Fe, Ni, Mn, Co etc) are the newly identified, prospective cathode materials offering extremely high stability, quite high theoretical specific capacity, very good cycIability and long life. Inspite of all these advantages, most of the phospho - olivines especially LiFeP04 and LiNiP04 show poor electronic conductivity compared to LixMn204, leading to low rate capacity and energy density. In the present work attempts have been made to improve the electronic conductivity of LiFeP04 and LiNiP04 by adding different weight percentage MWNT .It is expected that the addition of MWNT will enhance the electronic conductivity of LiFeP04 and LiNiP04 with out causing any significant structural distortions, which is important in the working of the lithium ion battery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation energy for crystallization (Ec) is a pertinent parameter that decides the application potential of many metallic glasses and is proportional to the crystallization temperature. Higher crystallization temperatures are desirable for soft magnetic applications, while lower values for data storage purposes. In this investigation, from the heating rate dependence of peak crystallization temperature Tp, the Ec values have been evaluated by three different methods for metglas 2826 MB (Fe40Ni38B18Mo4) accurately. The Ec values are correlated with the morphological changes, and the structural evolution associated with annealing temperatures is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand on magnesium and its alloys is increased significantly in the automotive industry because of their great potential in reducing the weight of components, thus resulting in improvement in fuel efficiency of the vehicle. To date, most of Mg products have been fabricated by casting, especially, by die-casting because of its high productivity, suitable strength, acceptable quality & dimensional accuracy and the components produced through sand, gravity and low pressure die casting are small extent. In fact, higher solidification rate is possible only in high pressure die casting, which results in finer grain size. However, achieving high cooling rate in gravity casting using sand and permanent moulds is a difficult task, which ends with a coarser grain nature and exhibit poor mechanical properties, which is an important aspect of the performance in industrial applications. Grain refinement is technologically attractive because it generally does not adversely affect ductility and toughness, contrary to most other strengthening methods. Therefore formation of fine grain structure in these castings is crucial, in order to improve the mechanical properties of these cast components. Therefore, the present investigation is “GRAIN REFINEMENT STUDIES ON Mg AND Mg-Al BASED ALLOYS”. The primary objective of this present investigation is to study the effect of various grain refining inoculants (Al-4B, Al- 5TiB2 master alloys, Al4C3, Charcoal particles) on Pure Mg and Mg-Al alloys such as AZ31, AZ91 and study their grain refining mechanisms. The second objective of this work is to study the effect of superheating process on the grain size of AZ31, AZ91 Mg alloys with and without inoculants addition. In addition, to study the effect of grain refinement on the mechanical properties of Mg and Mg-Al alloys. The thesis is well organized with seven chapters and the details of the studies are given below in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main challenges in the deposition of cathode materials in thin film form are the reproduction of stoichiometry close to the bulk material and attaining higher rates of deposition and excellent crystallinity at comparatively lower annealing temperatures. There are several methods available to develop stoichiometric thin film cathode materials including pulsed laser deposition; plasma enhanced chemical vapor deposition, electron beam evaporation, electrostatic spray deposition and RF magnetron sputtering. Among them the most versatile method is the sputtering technique, owing to its suitability for micro-fabricating the thin film batteries directly on chips in any shape or size, and on flexible substrates, with good capacity and cycle life. The main drawback of the conventional sputtering technique using RF frequency of 13.56MHz is its lower rate of deposition, compared to other deposition techniques A typical cathode layer for a thin film battery requires a thickness around one micron. To deposit such thick layers using convention RF sputtering, longer time of deposition is required, since the deposition rate is very low, which is typically 10-20 Å/min. This makes the conventional RF sputtering technique a less viable option for mass production in an economical way. There exists a host of theoretical and experimental evidences and results that higher excitation frequency can be efficiently used to deposit good quality films at higher deposition rates with glow discharge plasma. The effect of frequencies higher than the conventional one (13.56MHz) on the RF magnetron sputtering process has not been subjected to detailed investigations. Attempts have been made in the present work, to sputter deposit spinel oxide cathode films, using high frequency RF excitation source. Most importantly, the major challenge faced by the thin film battery based on the LiMn2O4 cathode material is the poor capacity retention during charge discharge cycling. The major causes for the capacity fading reported in LiMn2O4cathode materials are due to, Jahn-Teller distortion, Mn2+ dissolution into the electrolyte and oxygen loss in cathode material during cycling. The work discussed in this thesis is an attempt on overcoming the above said challenges and developing a high capacity thin film cathode material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of the investigation of the magnetic and structural properties of the alloy system Fe0.75–xSi0.25Sbx, where x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25 synthesized by mechanical alloying followed by heat treatment are described. The x-ray diffraction reveals that all samples crystallize in the DO3-type cubic phase structure. Substituting Fe by Sb led to a de-crease in the lattice constant and the unit cell volume. The magnetic properties are investigated by vibrating sample magnetometer and show that all the samples are ferromagnetically ordered at room temperature. The Curie temperature is found to decrease linearly from (850 ± 5) K for the parent alloy to (620 ± 5) K for the alloyith x = 0.25. The satura-tion magnetizations at room temperature and at 100 K are found to decrease with increasing the antimony concentration. The above results indicate that Sb dissolves in the cubic structure of this alloy system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction welding is a solid state joining process that produces coalescence in materials, using the heat developed between surfaces through a combination of mechanical induced rubbing motion and applied load. In rotary friction welding technique heat is generated by the conversion of mechanical energy into thermal energy at the interface of the work pieces during rotation under pressure. Traditionally friction welding is carried out on a dedicated machine because of its adaptability to mass production. In the present work, steps were made to modify a conventional lathe to rotary friction welding set up to obtain friction welding with different interface surface geometries at two different speeds and to carry out tensile characteristic studies. The surface geometries welded include flat-flat, flat-tapered, tapered-tapered, concave-convex and convex-convex. A comparison of maximum load, breaking load and percentage elongation of different welded geometries has been realized through this project. The maximum load and breaking load were found to be highest for weld formed between rotating flat and stationary tapered at 500RPM and the values were 19.219kN and 14.28 kN respectively. The percentage elongation was found to be highest for weld formed between rotating flat and stationary flat at 500RPM and the value was 21.4%. Hence from the studies it is cleared that process parameter like “interfacing surface geometries” of weld specimens have strong influence on tensile characteristics of friction welded joints