24 resultados para Ligands and pince complexes

em Cochin University of Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study deals with the diversity in structural and spectural characteristics of some transition metal complexes derived from aldehyde based thiosemicarbazone ligands thiosemicarbazones are a family of compounds with beneficial biological activity viz., anticancer,antitumour, antifungal, antibacterial, antimalarial, antifilarial, antiviral and anti-HIV activities. Many thiosemicarbazone ligands and their complexes have been prepared and screened for their antimicrobial activity against various types of fungi and bacteria. The results prove that the compounds exhibit antimicrobial properties and it is important to note that in some cases metal chelates show more inhibitory effects than the parent ligands. The increased lipophilicity of these complexes seems to be responsible for their enhanced biological potency. Adverse biological activities of thiosemicarbazones have been widely studied in rats and in other species. The parameters measured show that copper complexes caused considerable oxidative stress and zinc zinc complexes behaved as antioxidants. It has applications on analytical field also. Some thiosemicarbazones produce highly colored complexes with metal ions. This thesis aims to synthesis some novel thiosemicarbazone ligands and their transition metal complexes together with their physico-chemical characterization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study an attempt has been made to synthesize some simple complexes of multidentate ligands. Analogous zeolite encapsulated complexes were also synthesized and characterized. Immobilization on to polymer supports through covalent attachment is expected to solve the problem of decomposition of many complexes during catalytic reaction. Hence the work is also extended to the synthesis and characterization of some polymer supported complexes of Schiff base Iigands. All the three types of synthesized complexes, simple, zeolite encapsulated and polystyrene anchored, were subjected to catalytic activity study towards catechol-oxidation reaction. A selected group of complexes were also screened for their catalytic activity towards phenol-oxidation reaction. Biological screening of the synthesized ligands and neat complexes were done with a view to establish the effect of complexation on biological systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is an introduction to evaluate the coordination behaviour of a few compounds of our interest. The crucial aim of these investigations was to synthesize and characterize some transition metal complexes using the ligands benzaldehyde, 2-hydroxybenzaldehyde and 4-methoxybenzaldehyde N(4)-ring incorporated thiosemicarbazones.The study involves a brief foreword of the metal complexes of thiosemicarbazones including their bonding, stereochemistry and biological activities.The different analytical and spectroscopic techniques used for the analysis of the ligands and their complexes are discussed.It also deals with the synthesis and spectral characterization of the thiosemicarbazones and single crystal X-ray diffraction study of one of them.Chapter 3 describes the synthesis, spectral characterization, single crystal X-ray diffraction studies of copper(ll) complexes with ONS/NS donor thiosemicarbazones. Chapter 4 deals with the synthesis, spectral characterization and single crystal X-ray diffraction studies of nickel(II) complexes. Chapter 5 contains the synthesis, structural and spectral characterization of the cobalt(III) complexes. Chapters 6 and 7 include the synthesis, structural and spectral characterization of zinc(II) and cadmium(ll) complexes with ONS/NS donor thiosemicarbazones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schiff base complexes of transition metal ions have played a significant role in coordination chemistry.The convenient route of synthesis and thermal stability of Schiff base complexes have contributed significantly for their possible applications in catalysis,biology,medicine and photonics.Significant variations in cataltytic activity with structure and type are observed for these complexes.The thesis deals with synthsis and characterization of transition metal complexes of quinoxaline based Schiff base ligands and their catalytic activity study.The Schiff bases synthesized in the present study are quinoxaline-2-carboxalidine-2-amino-5-methylphenol,3-hydroxyquinoxaline-2-carboxalidine-2-amino-5-methylphenol,quinoxaline-2-aminothiophenol.They provide great structural diversity during complexation.To the best of our knowledge, the transition metal complexes of quinoxaline based Schiff bases are poorly utilised in academic and industrial research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work deals with the complexation of Schiff bases of aroylhydrazines with various transition metal ions. The hydrazone systems selected for study have long 7I:-delocalized chain in the ligand molecule itself, which get intensified due to metal-to-ligand or ligand-to-metal charge transfer excitations upon coordination. Complexation with metal ions like copper, nickel, cobalt, manganese, iron, zinc and cadmium are tried. Various spectral techniques are employed for characterization. The structures of some complexes have been well established by single crystal X-ray diffraction studies. The nonIinaer optical studies of the ligands and complexes synthesized have been studied by hyper-Rayleigh scattering technique.The work is presented in seven chapters and the last one deals with summary and conclusion. One of the hydrazone system selected for study proved that it could give rise to polymeric metal complexes. Some of the copper, nickel, zinc and cadmium complexes showed non-linear optical activity. The NLO studies of manganese and iron showed negative result, may be due to the inversion centre of symmetry within the molecular lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work deals with the investigations on sthe structural spectral and magnetic interactions of transition metal complexes of multidentate ligands from D1-2-pyridyl ketone and N(4)-Substituted thiosemicarbazides.Thiosemicarbazones are thiourea derivatives with the general formula R2N— C(S)—NH—N=CR2. In the solution state, the thiosemicarbazones exhibit the thionethiol tautomerism similar to the keto-enol tautomerism, and in solution state the thiol form predominates and a deprotonation at the thiolate group in alcoholic medium enhances the coordination abilities ofthe thiosemicarbazones.The magnetochemistry of metal complexes of di-2-pyridyl ketone is a current hot subject of research, which mainly owes to the excellent structural diversity of the complexes ranging from cubanes to clusters, with promising ferromagnetic outputs.Only few efforts were aimed at the magnetochemistry of metal complexes of thiosemicarbazones, and that too were concerned with the complexes of bisttltioscinicarbazones). However, as far as the monothiosemicarbazones are concerned, the magnetochemistry of transition metal complexes of di-2-pyridyl ketone thiosemicarbazones turned up quite unexplored. Consequently, an investigation into it appeared novel and promising to us and that prompted this study, which can be regarded as the initial step towards exploring the magnetochemistry of thiosemicarbazone complexes, especially of di-2-pyridyl ketone derivatives.We could successfully isolate single crystals suitable for X-ray diffraction for the first three ligands. To conclude, we have synthesized some new thiosemicarbazones and their transition metal complexes and studied their structural, spectral and magnetic attributes. Some ofthe complexes revealed interesting stereochemistries and possible bridging characteristics with spectroscopic evidences. Unfortunately, single crystal Xray diffraction studies could not be carried out for many of these interesting compounds due to the lack of availability of suitable quality single crystals. However, the magnetic studies provided support for the proposed stereochemistry giving evidences for their magnetically concentrated nature. The magnetic susceptibilities measured at six different temperatures in the 80-298 K range are fitted into different magnetic equations, which provided an idea about the magnetic behavior of the compounds under study. Some of the copper, oxovanadium, nickel and cobalt complexes are found to possess anomalous magnetic moments, i.e., they revealed no regular gradation with temperature. However, some other copper complexes are observed to be antiferromagnetic, due to super-exchange pathways. The manganese complexes and one of the cobalt complexes are also observed to be antiferromagnetic in nature. However, some nickel complexes have turned up to be ferromagnetic. Accordingly, the versatile stereoehemistry and magnetic behavior of the complexes studied, prompt us to conclude that the transition metal complexes of di-2-pyridyl ketone thiosemicarbazones are promising systems for potential magnetic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with the synthesis, characterization and catalytic activity studies of some new Fe (III), Co (II), Ni (II) and Cu (II) complexes of hydrazones and their zeolite encapsulated analogues. Hydrazones have diverse applications in biological, non-biological and biochemical front. During the present study three hydrazone types of ligands namely, acetylacetone- 2-hydroxyphenylhydrazone (APAcAc), acetoacetanilide- 2-hydroxyphenylhydrazone (APAcAcA) and acetoacetanilide-3,5-dihydro-2,4-dione pyrimidylhydrazone (AUAcAcA) were synthesized by diazotization of primary amine and coupling with compounds containing active methylene group. First part of the thesis deals with the synthesis of Fe, Co, Ni and Cu complexes using three hydrazone types of ligands are given. Details regarding the characterization of these complexes with a view to establishing the molecular structures are presented in this part. The other part contains the method of encapsulation of these complexes in zeolite cavities and their characterizations of the encapsulated metal species are described. A comparitive account of the catalytic activities of the pure and encapsulated complexes for cyclohexanol oxidation was also carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallo-organic chemistry,incorporating the frontiers of both inorganic and organic chemical aspects,is a topic of utility concern.The first exploration of coordinated metal complexes dates back to the ninettenth century,during the days of Alfred Werner.Thereafter,inorganic chemistry witnessed a great outflow of coordination compounds,with unique structural characteristics and diverse applicatons.The diversity in structures exhibited by the coordination complexes of multidentate ligands have led to their usage as sensors,models for enzyme mimetic centers,medicines etc.The liganda chosen are of prime importance in determining the properties of coordination compounds.Schiff bases are compounds obtained by the condensation of an aidehyde or ketone with an amine.The chemical properties of Schiff bases and their complexes are widely explored in recent years owing to their pharmacological activity,their catalytic activities and so on.On the other hand pseudohalides like azide and thiocyanate are versatile candidates for the construction of dimeric or polymeric complexes having excellent properties and diverse applications.So a combination of the Schiff bases and the pseudohalogens for the synthesis of metal complexes can bring about interesting results.An attempt into this area is the besis of this Ph.D theis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is mainly concerned with the synthesis and characterisation of new simple and zeolite encapsulated transition metal (manganese(II),nickel(II),and copper(II)complexes of quinoxaline based double Schiff base ligands.Theses ligands are N,N'-bis(quinoxaline-2-carboxalidene)hydrazine,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminoethane,N,N'-bis(quinoxaline-2-carboxalidene)-1,3-diamonopropane,N,N'-bis(quinoxaline-2-carboxalidene)-1,4-diaminobutane,N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminocyclohexane and N,N'-bis(quinoxaline-2-carboxalidene)-1,2-diaminobenzene.The Schiff base ligands have been characterised by spectral and single crystal XRD studies.Theses ligands provide great structural diversity during complexation.Mn(II) and Ni(II) form octahedral with these Schiff bases,whereas Cu(II) forms both octahedral and tetrahedral complexes.Studies on the biological and Catalytic activity of the copper(ll) complexes are also presented in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiosemicarbazones have recently attracted considerable attention due to their ability to form tridentate chelates with transition metal ions through either two nitrogen and sulfur atoms, N–N–S or oxygen, nitrogen and sulfur atoms, O–N–S. Considerable interest in thiosemicarbazones and their transition metal complexes has also grown in the areas of biology and chemistry due to biological activities such as antitumoral, fungicidal, bactericidal, antiviral and nonlinear optical properties. They have been used for metal analyses, for device applications related to telecommunications, optical computing, storage and information processing.The versatile applications of metal complexes of thiosemicarbazones in various fields prompted us to synthesize the tridentate NNS-donor thiosemicarbazones and their metal complexes. As a part of our studies on transition metal complexes with these ligands, the researcher undertook the current work with the following objectives. 1. To synthesize and physico-chemically characterize the following thiosemicarbazone ligands: a. Di-2-pyridyl ketone-N(4)-methyl thiosemicarbazone (HDpyMeTsc) b. Di-2-pyridyl ketone-N(4)-ethyl thiosemicarbazone (HDpyETsc) 2. To synthesize oxovanadium(IV), manganese(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes using the synthesized thiosemicarbazones as principal ligands and some anionic coligands. 3. To study the coordination modes of the ligands in metal complexes by using different physicochemical methods like partial elemental analysis, thermogravimetry and by different spectroscopic techniques. 4. To establish the structure of compounds by single crystal XRD studies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer supports and polymeric complexes are highly versatile and they are successfully employed as efficient reagents, substrates and catalysts. Recently there observed a growing interest in the synthesis of tailor-made polymer supports and functionalized polymers for the preparation of metal complexes for various applications. They have the combination of properties due to the macromolecular structure as well as due to the reactivity of the functional group. An interesting feature of functional polymers is their affinity towards metal ions. Therefore the synthesis, characterization and application of such polymeric complexes have great scientific and analytical importance. In this investigation three series of polymeric complexes of transition metal ions are prepared from three schiff bases. All the complexes and polymeric schiff bases were characterized by analytical, spectral and thermal methods The thesis consist of six chapters. The first chapter contains an introduction and a brief review on application of polymer supports, polymer supported ligands and complexes. The second chapter gives the details of reagents and instruments used and the procedure adopted for the preparation of ligands and complexes. The third chapter explains the methods employed for characterization and the results are also discussed. The fourth chapter gives a detailed study of metal ion removal using ligands whereas the fifth chapter describes the development of the Cu” ion sensor electrode. The sixth chapter is the summary of the thesis and references are presented at the end.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aqua complex ions of metals must have existed since the appearance of water on the earth, and the subsequent appearance of life depended on, and may even have resulted from the interaction of metal ions with organic molecules. Studies on the coordinating ability of metal ions with other molecules and anions culminated in the theories of/\lfred Werner. Thereon the progress in the studies of metal complex chemistry was rapid. Many factors, like the utility and economic importance of metal chemistry, the intrinsic interest _in many of the compounds and the intellectual challenge of the structural problems to be solved, have contributed to this rapid progress. X—ray diffraction studies further accelerated the progress. The work cited in this thesis was carried out by the author in the Department of Applied Chemistry during 2001-2004. The primary aim of these investigations was to synthesise and characterize some transition metal complexes of 2-benzoylpyridine N(4)-substituted thiosemicarbazones and to study the antimicrobial activities of the ligands and their metal complexes. The work is divided into eight chapters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis entitled “Synergistic solvent extraction of Thorium(IV) and Uranium(VI) with β-diketones in presence of oxo-donors” embodies the results of the investigations carried out on the extraction of thorium(IV) an uranium(VI) with heterocyclic β-diketones in the presence and absence of various macrocyclic ligands and neutral organophosphorus extractants. The objective of this work is to generate the knowledge base to achieve better selectivity between thorium(IV) and uranium(VI) by understanding the interactions of crown ethers or neutral organophosphorus extractants with metal-heterocyclic β-diketonate complexes. Para-substituted 1-phenyl-3-methyl-4-aroyl-5-pyrazolones, namely,1-phenyl-3-methyl-4-(4-fluorobenzoyl)-5-pyrazolone (HPMFBP) and 1-phenyl-3-methyl-4-(4-toluoyl)-5-pyrazolone (HPMTP) were synthesized and characterized by elemental analysis, IR and H NMR spectral data. The synthesized ligands have been utilized for the extraction of thorium(IV) and uranium(VI) from nitric acid solutions in the presence and absence of various crown ethers. Thorium(IV) and uranium(VI) complexes with HPMPP(1-Phenyl-3-methyl-4-pivaloyl-5-pyrazolone) and neutral organophosphorus extractants were synthesized and characterized by IR and P NMR spectral data to further understand the interactions of neutral organophosphorus extractants with metal-chelates. Solid complexes of thorium(IV) and uranium(VI) with para-substituted 4-aroyl-5-isoxazolones and crown ethers were isolated and characterized by various spectroscopic techniques to further clarify the nature of the extracted complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on transition metal complexes have achieved a great interest due to their versatile applications.The convenient route for synthesis,the nature of ligands and stability of metal complexes has significant contributions in their applications in medicine,biology,catalysis and photonics.The present work deals wth the synthesis and characterization of metal complexes of some tridentate acylhydrazones .Hydrazones are promising ligands in coordination chemistry with interesting binding modes and applications.The acylhydrazones chosen for the current study are capable of forming complexes in different forms through tautomerism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Design and study of molecular receptors capable of mimicking natural processes has found applications in basic research as well as in the development of potentially useful technologies. Of the various receptors reported, the cyclophanes are known to encapsulate guest molecules in their cavity utilizing various non–covalent interactions resulting in significant changes in their optical properties. This unique property of the cyclophanes has been widely exploited for the development of selective and sensitive probes for a variety of guest molecules including complex biomolecules. Further, the incorporation of metal centres into these systems added new possibilities for designing receptors such as the metallocyclophanes and transition metal complexes, which can target a large variety of Lewis basic functional groups that act as selective synthetic receptors. The ligands that form complexes with the metal ions, and are capable of further binding to Lewis-basic substrates through open coordination sites present in various biomolecules are particularly important as biomolecular receptors. In this context, we synthesized a few anthracene and acridine based metal complexes and novel metallocyclophanes and have investigated their photophysical and biomolecular recognition properties.