5 resultados para Laterite.

em Cochin University of Science


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work attempts to trace the variation in the physical and chemical behavior of ilmenite, since its release from country rocks and subsequent transportation to the coast through the progressive weathering environments of laterite, sedimentary rocks, rivers and estuarine systems. Since the hinterland of the study area consists of crystalline and sedimentary rocks and their weathered forms (laterites), the contribution of each lithological system to the beach placer is attempted. The results of the study show that the most magnetic fraction contains more content of altered phases than the relatively unweathered fractions. The fractions separated above 0.35A define a high grade of ilmenite ore enriched in Ti content. The lattice volume generally decreases with alteration. The magnetic studies revels that the Chavara ilmenite are found to be made up to low magnetic crops with about 46% of the bulk ilmenite constituted by fractions separated at above 0.35A. In the Manavalakurichi ilmenite on the other hand, around 91% of the beach ilmenite is made of fractions separated at or below 0.3A

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frames are the most widely used structural system for multistorey buildings. A building frame is a three dimensional discrete structure consisting of a number of high rise bays in two directions at right angles to each other in the vertical plane. Multistorey frames are a three dimensional lattice structure which are statically indeterminate. Frames sustain gravity loads and resist lateral forces acting on it. India lies at the north westem end of the Indo-Australian tectonic plate and is identified as an active tectonic area. Under horizontal shaking of the ground, horizontal inertial forces are generated at the floor levels of a multistorey frame. These lateral inertia forces are transferred by the floor slab to the beams, subsequently to the columns and finally to the soil through the foundation system. There are many parameters that affect the response of a structure to ground excitations such as, shape, size and geometry of the structure, type of foundation, soil characteristics etc. The Soil Structure Interaction (SS1) effects refer to the influence of the supporting soil medium on the behavior of the structure when it is subjected to different types of loads. Interaction between the structure and its supporting foundation and soil, which is a complete system, has been modeled with finite elements. Numerical investigations have been carried out on a four bay, twelve storeyed regular multistorey frame considering depth of fixity at ground level, at characteristic depth of pile and at full depth. Soil structure interaction effects have been studied by considering two models for soil viz., discrete and continuum. Linear static analysis has been conducted to study the interaction effects under static load. Free vibration analysis and further shock spectrum analysis has been conducted to study the interaction effects under time dependent loads. The study has been extended to four types of soil viz., laterite, sand, alluvium and layered.The structural responses evaluated in the finite element analysis are bending moment, shear force and axial force for columns, and bending moment and shear force for beams. These responses increase with increase in the founding depth; however these responses show minimal increase beyond the characteristic length of pile. When the soil structure interaction effects are incorporated in the analysis, the aforesaid responses of the frame increases upto the characteristic depth and decreases when the frame has been analysed for the full depth. It has been observed that shock spectrum analysis gives wide variation of responses in the frame compared to linear elastic analysis. Both increase and decrease in responses have been observed in the interior storeys. The good congruence shown by the two finite element models viz., discrete and continuum in linear static analysis has been absent in shock spectrum analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete is a universal material in the construction industry. With natural resources like sand and aggregate, fast depleting, it is time to look for alternate materials to substitute these in the process of making concrete. There are instances like exposure to solar radiation, fire, furnaces, and nuclear reactor vessels, special applications like missile launching pads etc., where concrete is exposed to temperature variations In this research work, an attempt has been made to understand the behaviour of concrete when weathered laterite aggregate is used in both conventional and self compacting normal strength concrete. The study has been extended to understand the thermal behaviour of both types of laterised concretes and to check suitability as a fire protection material. A systematic study of laterised concrete considering parameters like source of laterite aggregate, grades of Ordinary Portland Cement (OPC) and types of supplementary cementitious materials (fly ash and GGBFS) has been carried out to arrive at a feasible combination of various ingredients in laterised concrete. A mix design methodology has been proposed for making normal strength laterised self compacting concrete based on trial mixes and the same has also been validated. The physical and mechanical properties of laterised concretes have been studied with respect to different variables like exposure temperature (200°C, 400°C and 600°C) and cooling environment (air cooled and water cooled). The behaviour of ferrocement elements with laterised self compacting concrete has also been studied by varying the cover to mesh reinforcement (10mm to 50mm at an interval of 10mm), exposure temperature and cooling environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urban developments have exerted immense pressure on wetlands. Urban areas are normally centers of commercial activity and continue to attract migrants in large numbers in search of employment from different areas. As a result, habitations keep coming up in the natural areas / flood plains. This is happening in various Indian cities and towns and large habitations are coming up in low-lying areas, often encroaching even over drainage channels. In some cases, houses are constructed even on top of nallahs and drains. In the case of Kochi the situation is even worse as the base of the urban development itself stands on a completely reclaimed island. Also the topography and geology demanded more reclamation of land when the city developed as an agglomerative cluster. Cochin is a coastal settlement interspersed with a large backwater system and fringed on the eastern side by laterite-capped low hills from which a number of streams drain into the backwater system. The ridge line of the eastern low hills provides a welldefined watershed delimiting Cochin basin which help to confine the environmental parameters within a physical limit. This leads to an obvious conclusion that if physiography alone is considered, the western flatland is ideal for urban development. However it will result in serious environmental deterioration, as it comprises mainly of wetland and for availability of land there has to be large scale filling up of these wetlands which includes shallow mangrove-fringed water sheets, paddy fields, Pokkali fields, estuary etc.Chapter 1 School 4 of Environmental Studies The urban boundaries of Cochin are expanding fast with a consequent over-stretching of the existing fabric of basic amenities and services. Urbanisation leads to the transformation of agricultural land into built-up areas with the concomitant problems regarding water supply, drainage, garbage and sewage disposal etc. Many of the environmental problems of Cochin are hydrologic in origin; like water-logging / floods, sedimentation and pollution in the water bodies as well as shoreline erosion