21 resultados para Laterally Loaded Pile
em Cochin University of Science
Resumo:
The current water treatment technology is oriented towards the removal of contaminants, mostly organic compounds, by activated carbon. Activated carbons are classified as Granular Activated Carbons (GAC) and Powdered Activated Carbons (PAC) on the basis of the particle size of the carbon granules. Powdered carbons are generally less expensive than granular carbon, operating costs with powdered carbon could be lower. Though powdered activated carbon has many advantages over granular carbon, its application in large-scale separation process is limited by difficulty in recovery and regeneration. Deposition of magnetic iron oxide on carbon particles provides a convenient way of recovering the spent carbon from process water. The study deals with the preparation and physico-chemical characterization of magnetic iron oxide loaded activated carbons. The evaluation of absorption properties of magnetic iron oxide loaded activated carbon composites. The target molecules studied were phenol, p-nitro phenol and methylene blue. The feasibility of magnetic separation of iron oxide loaded activated carbons were studied and described in this thesis.
Resumo:
Design and development of a new feed -horn antenna with low sidelobe levels is reported . The E-walls of this antenna are fabricated with low -loss dielectric substrate , periodicallyloaded with thin conducting strips . The antenna is found to be simulating the radiation characteristics of metallic Corrugated horns . This can be an ideal substitute for metallic Corrugated horns with added advantages like light -weight and low production cost
Resumo:
A new method for enhancing the 2.1 VSWR impedance bandwidth of microstrip antennas is presented. Bandwidth enhancement is achieved by loading the microstrip antenna by a ceramic microwave dielectric resonator (DR). The validity of this technique has been established using rectangular and circular radiating geometries. This method improves the bandwidth of a rectangular microstrip antenna to more than 10% (= 5 times that of a conventional rectangular microstrip antenna) with an enhanced gain of I dB
Resumo:
Dual frequency operation is achieved from a compact microstrip antenna by loading a pair of narrow slots close to its radiating edges. The two frequencies have parallel polarization planes and similar radiation characteristics. The ratio between the two operating frequencies can be tuned in the range (1.14-1. 24), which is much smaller than that of similar designs. The above excellent radiation characteristics are achieved along with an area reduction of - 75% compared to the standard rectangular patch
Resumo:
A novel technique fitr the bat dividth enhancement of conventional rectangular microstrip antenna is proposed in this paper. When a high permittivity dielectric resonator of suitable resonant frequency was loaded over the patch. the % bandwidth of the antenna was increased by more than five tunes without much affecting its gain and radiation performance. A much more improved bandwidth was obtained when the dielectric resonator was placed on the feedline. Experimental study shows a 2:1 VSWR bandwidth of more than 10% and excellent cross polarization performance with increased pass band and radiation coverage abnost the same as that of rectangular microstrip antenna
Resumo:
A novel compact single-layer dual frequency microstrip antenna which uses an H-shaped geometry with two U-shaped slots embedded near the radiation edges, is presented. By changing the design parameters, the lower and higher resonant frequencies can be controlled easily, and a range of frequency ratios (1.716-2.363) can be obtained in this design. For the two operating frequencies of the proposed antenna, the same polarization planes and broadside radiation patterns are achieved. Compared to the regular dualfrequency patch antenna, this antenna can realize a significant size reduction
Resumo:
A novel reconfigurable, single feed, dual frequency, dualpolarized operation of a hexagonal slot-loaded square mwrostrip antenna is presented in this paper. A pin diode incorporated in the slot is used to switch the two operating frequencies considerably, without significantly affecting the radiation characteristics and gain. The proposed antenna provides a size reduction up to 61% and 26% Jor the two resonating frequencies, compared to standard rectangular patches. This design also gives considerable bandwidth up to 3.3% and 4.27%, for the two frequencies with a low operating frequency ratio
Resumo:
Design and development of a new feed -horn antenna with low sidelobe levels is reported . The E-walls of this antenna are fabricated with low -loss dielectric substrate , periodically loaded with thin conducting strips . The antenna is found to be simulating the radiation characteristics of metallic corrugated horns . This can be an ideal substitute for metallic corrugated horns with added advantages like light -weight and low production cost.
Resumo:
Design and development of a new feed -horn antenna with low sidelobe levels is reported . The E-walls of this antenna are fabricated with low -loss dielectric substrate , periodically loaded with thin conducting strips . The antenna is found to be simulating the radiation characteristics of metallic corrugated horns . This can be an ideal substitute for metallic corrugated horns with added advantages like light -weight and low production cost.
Resumo:
The thesis is the outcome of the experimental and theoretical investigations carried out on a novel slotted microstrip antenna.The antenna excites two resonance frequencies and provides orthogonal polarization. The radiation characteristics of the antenna are studied in detail. The antenna design is optimized using IE3D electromagnetic simulation tool. The frequency-Difference Time-Domain (FDTD) method is employed for the analysis of the antenna.The antenna can be used for personal and satellite communication applications.
Resumo:
Transition metal-loaded (3%) nanocrystalline sulfated titania (ST) powders are prepared using the sol–gel technique. Anatase is found as the active phase in all the samples. Sulfate ion impregnation decreases the crystallite size and stabilizes the anatase phase of TiO2. Acidity of the samples is found to increase by the incorporation of sulfate ion and also by the modification by transition metal ions. All the prepared catalysts are found stable up to 700 °C.
Resumo:
The thermal diffusivity of y-alumina is determined by the photoacoustic method. The method is calibrated by determining the thermal diffusivity of copper and aluminum. The effect of the chemisorbed hydroxyl groups or thermal diffusivity is studied by degassing the sample at different temperatures.
Resumo:
Chromia loaded sulfated titania has been synthesized via sol–gel route with different chromia loadings. These catalysts are characterized using conventional techniques such as XRD analysis, FTIR analysis, surface area and pore volume measurements, EDX, SEM and UV–Vis diffuse reflectance spectral analysis. Acidity is measured using spectrophotometric monitoring of adsorption of perylene, thermogravimetric desorption of 2,6-dimethylpyridine and temperature programmed desorption of ammonia. Activity studies are done in the liquid phase. It has been concluded that Lewis acid sites are responsible for the benzylation of arenes with benzyl chloride.
Resumo:
Design of a compact dual frequency microstrip antenna is presented. The structure consists of a slotted circular patch with a dielectric superstrate. The superstrate,not only acts as a radome, but improves the bandwidth and lowers the resonant frequency also. The proposed design provides an overall size reduction of about 60% compared to an unslotted patch along with good efficiency,gain and bandwidth. The polarization planes at the two resonances are orthogonal and can be simultaneously excited using a coaxial feed. Parametric study of this configuration showed that the frequency ratio of the two resonances can be varied from 1.17 to 1.7 enabling its applications in the major wireless communication bands like AWS, DECT,PHS,Wi.Bro, ISM,and DMB. Design equations are also deduced for the proposed antenna and validated.
Resumo:
The use of a split-ring resonator (SRR)-loaded waveguide for the design of a band-rejection filter with adjustable bandwidth is reported. The width of the stopband can be adjusted by suitably positioning the SRR array in the waveguide. The rejection band can be made very narrow by placing the array at the electric-field minimum. The stopband attenuation depends on the number of unit cells in the array.